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Executive Summary 

Connected vehicles, the internet of things, and smart infrastructure technologies facilitate 

the exchange of real-time, highly granular information among individual users in transportation 

networks, system operators, and the supporting infrastructure through communication standards. 

Harnessing this emergent, ubiquitous connectivity and its resulting data stream will open 

unexplored possibilities to improve network mobility by optimizing the timing of signalized 

intersections.  

This project developed a priority-based, distributed coordinated algorithm to determine 

signal plans in transportation networks with connected and semi-connected corridors. We 

proposed a fog-cloud architecture in which to implement the hierarchical, priority-based control. 

This algorithm decomposes the signal timing problem into intersection-level sub-problems and 

optimizes sub-problems simultaneously.  The decomposition approach decreases the complexity 

of the problem because sub-problems have a smaller number of variables and can be optimized in 

parallel. The computation of sub-problems is assigned to fogs. The fog component finds signal 

plans for each sub-problem (intersection) in real time.  

The sub-problems are coordinated by an exchange of information through a cloud 

backbone that is in connection with intersection-level fog components. The cloud backbone 

administers the exchange of information among the intersection-level fog components and 

provides requested information by fogs.  The cloud also monitors changes in the transportation 

network and adjusts the coordination when needed. 

Numerical results for a simulated corridor of ten intersections showed that the approach 

effectively determined near-optimal signal timing parameters under different demand levels, and 
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significant improvements in traffic operations were observed with increased connected vehicle 

market penetration rates. 
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1 Introduction 

1.1 Background 

Connected vehicles, the internet of things, and smart infrastructure technologies facilitate 

the exchange of real-time, highly granular information among individual users in transportation 

networks, system operators, and the supporting infrastructure through communication standards. 

Harnessing this emergent ubiquitous connectivity and its resulting data stream will open 

unexplored possibilities to improve network mobility, specifically by optimizing the timing of 

signalized intersections.  

Corridor-level signal timing can be formulated as an optimization model; however, this 

model is computationally complex (NP-complete) with nonlinear terms, mixed-integer decision 

variables, various connected vehicle penetration rates and data streams, and stochastic 

transportation demand/capacity and driver behavior. The state-of-practice signal system 

technology is based on point detector data. It does not utilize connected vehicle data and does not 

have the computational power to solve complex optimization models. This research will addressed 

these shortcomings by (1) formulating a mathematical optimization model for signal timing that 

can utilize both detector and connected vehicle data, (2) developing an efficient solution technique, 

and (3) executing the solution technique with a cloud-fog hierarchical architecture.  

Previous research on signal timing optimization can be divided into four main groups based 

on the problem architecture: (a) centralized, (b) hierarchical, (c) decentralized, and (d) distributed-

coordinated approaches.  

The majority of signal timing optimization algorithms utilize a centralized formulation and 

architecture (Abu-Lebdeh and Benekohal, 1997; Beard and Ziliaskopoulos, 2006; Chang and Sun, 

2004; Feng et al., 2015; Girianna and Benekohal, 2002; Hajbabaie and Benekohal, 2013; Hunt et 
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al., 1983; Karoonsoontawong and Waller  Travis, 2010; Medina et al., 2013; Putha et al., 2012; 

Sun et al., 2006; Teklu et al., 2007). As a result, they optimize the various signal timing parameters 

(i.e., phase plan, cycle length, green times, and offsets) of all intersections at the same time in one 

optimization model.  However, network-level signal timing optimization is an NP-complete 

problem (Hajbabaie, 2012; Wünsch, 2008), and a central optimization technique will not be 

scalable and applicable to large transportation networks.  

To overcome this issue, decentralized approaches have been developed that decompose the 

network into regions with varying numbers of intersections. Rather than solving a single 

optimization problem for the entire network, several optimization problems are solved 

simultaneously (Gregoire et al., 2015; Lee et al., 2013; Adacher  and Oliva, 2014; Goodall  and 

Park, 2013; Porche and Lafortune, 1998; Priemer, 2009; Wongpiromsarn et al., 2014). As a result, 

decentralized approaches are scalable. However, fully decentralized approaches tend to lose 

performance because of a lack of coordination among the split optimization processes. Therefore, 

they mostly control signals locally and may find sub-optimal solutions rather than a global optimal 

one.  

To overcome this issue, hierarchical approaches have been developed that decompose the 

network optimization problem into a multi-level control problem with distinct objectives at each 

level. The underlying concept of most hierarchical approaches is to make network-level decisions 

at the upper (or central) level, and real-time, small-area computations at the lower (or intersection) 

level (Gartner et al., 2001; Head et al., 1992; Mauro and DiTaronto, 1990; Gartner  and Andrews, 

2002; Sims and Dobinson, 1980). Designing signal control methods with a reasonable balance 

between these levels is challenging (Dion and Hellinga, 2001), as the upper and lower levels may 
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have objective functions that compete with each other. In addition, the computational complexity 

of the upper level may increase with the size of the network.  

This project developed efficient distributed yet coordinated, priority-based algorithms to 

control signalized intersections in connected and semi-connected corridors. We utilized a 

hierarchical, priority-based control with fog-cloud architecture to achieve this objective. The fog 

component consists of micro-data centers with limited computational capabilities collocated with 

road-side units (RSUs). They are responsible for computing the optimal timings of traffic signals 

in real time utilizing their limited capabilities. To achieve this objective, we developed distributed 

coordination and optimization algorithms to effectively reduce the complexity of the problem by 

decomposing it into intersection-level sub-problems while still guaranteeing near-optimal 

solutions through effective coordination of various decisions. 

On the other hand, the cloud backbone is connected to all the intersection-level fog 

components to provide network-level monitoring and optimal control decisions. The role of this 

cloud-level control is to administer the exchange of information among the intersection-level fog 

components and to enable distributed yet coordinated optimization. It also analyzes the data to 

identify any changes in the spatio-temporal patterns of the network operations that might require 

a change in the coordination scheme at each intersection. In the individual intersection-level fog 

computation, the optimization is performed with factoring data from a certain number of 

neighboring intersections to ensure effective coordination. The cloud-level control can adjust the 

number and extent of the intersections included in the fog-level optimization in cases of incidents 

and preemption for emergency vehicles, buses, or trucks carrying hazardous materials. This 

innovative, hybrid, two-level control approach ensures real-time coordinated and optimized 

decisions that can adapt to changes in the characteristics of network traffic operations.   
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The project focused on the existing traffic signal system control technology and developed 

formulation and solution techniques compatible with it. It also studied the impacts of various 

connected vehicle penetration rates.  

1.2 Project Goal and Objectives 

The goal of this project was to improve mobility in connected and semi-connected 

corridors. The main objective of this research was to develop efficient distributed yet coordinated 

algorithms to control signalized intersections in connected corridors and those that are semi-

connected (where not all vehicles have connectivity capability or refrain from sharing intentions 

for privacy reasons). The research was intended to enhance traffic signal optimization formulations 

to allow for the incorporation of connected vehicles and existing point detector data in the models, 

the distribution of decisions at both the intersection and the corridor levels to reduce computational 

complexity, and the coordination of control decisions among various intersections by a distributed, 

cloud-fog-based communications network to push solutions toward global optimality.  

1.3 Report Organization  

This report contains eight chapters. The second chapter presents a comprehensive review 

of literature relevant to signal control in transportation networks. Chapter 3 introduces an 

optimization model to determine the timing of signalized intersections in a transportation network. 

Chapter 4 describes the development of a distributed optimization and coordination solution 

technique to find signal timing parameters in real time. Chapter 5 presents the incorporation of 

connected vehicle and point detector data in the formulation. Chapter 6 provides information on 

the cloud-fog communication architecture and how it can be implemented in a micro-simulation-

based testbed. Chapter 9 includes numerical results, and Chapter 10 presents concluding remarks. 
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1.4 Institutional Partnerships 

This project included two important parts: methodological and technological 

developments. The Washington State University (WSU) team led the methodological 

developments: problem formulation, distributed solution algorithm, and micro-simulation test-bed 

development.  

The University of Idaho (UI) team  led the technological advancements: 

communication/computing infrastructure and modeling the proposed system operations in a 

hardware-in-the-loop simulation (HILS) environment that enabled the execution and testing of the 

proposed algorithms.   
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2 Literature Review  

This chapter presents a review of literature on existing signal control approaches.  

2.1 Centralized Control Systems 

Centralized control systems (CCSs) include a central processor that determines system 

control variables. The processor sends the determined variables to individual traffic controllers. 

Increasing the study period, adding signalized intersections, considering turning movements, 

considering various phasing plans, and applying realistic traffic flow dynamics adversely affect 

the computational complexity of these systems. Therefore, CCSs may fail for large-scale networks, 

especially when CCSs use optimization-based algorithms to find optimal solutions (Chan, 1997). 

The algorithms employed in CCSs can be categorized into optimization-based and heuristic 

approaches.   

2.1.1 Optimization-Based Approaches 

These approaches find globally optimal solutions for an intersection, an arterial, or a 

network of intersections. Webster (1958) optimized the signal timing plans of an isolated 

intersection to minimize travel delay for the first time. Since then, many types of research in the 

field of signal timing optimization have been conducted.  

Lo (1999) developed a cell transmission model (CTM) based, mixed-integer linear 

formulation to minimize total delay. In this formulation, the non-linear CTM equations were 

linearized to reduce the computational complexity. Green and red signal durations were optimized 

with a fixed cycle length. Moreover, the formulation captured traffic dynamics under different 

demand patterns and network conditions. A small network of 15 cells was solved centrally, and 

the requirement of developing efficient solution techniques for larger case studies was noted. The 

formulation was also simplified to cases with no turning movements. This simplification was a 
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restrictive assumption. Later, Lo (2001) proposed a CTM-based, mixed-integer linear formulation 

with turning movements to optimize signal timing variables. The solutions of formulation did not 

have the vehicle holding back problem. 

Lin and Wang (2004) proposed a cell-based, mixed-integer linear formulation to optimize 

cycle lengths and green splits. Different objective functions, including the minimization of total 

delay, the number of stops, and lost time, were integrated with weight multipliers associated with 

each objective. The formulation was optimized by using CPLEX for a network of two intersections 

with 15 cells, one-way streets, and no turning movements. The researchers also modified the 

formulation to consider emergency vehicles in traffic streams. The main drawback was that the 

formulation could not be solved for larger networks unless more efficient algorithms were used.  

Beard and Ziliaskopoulos (2006) proposed a mixed integer linear program (MILP) 

formulation to minimize total travel time that considered signal timing and dynamic traffic 

assignment problems simultaneously. Some important features of this formulation were modeling 

turning movements, protected and permissive movements, and multiple origins and destinations. 

The decisions about routes, cycle lengths, and splits were determined. They showed that dynamic 

signal timing optimization performed better than pre-timed signal timings, particularly when an 

incident happened in the network. However, commercial software was not able to solve the 

formulation with standard methods, e.g., the simplex, dual simplex, and interior point methods for 

large networks. 

Karoonsoontawong and Waller (2010) presented a formulation that considered signal 

timing optimization, user equilibrium dynamic traffic assignment, and capacity expansion 

problems simultaneously. The formulations were cell-based, mixed-integer, linear, and non-linear. 

Formulations were also proposed as deterministic, stochastic, bi-level, and single-level. The 
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decision set included phase sequence, cycle lengths, green signal duration, and offsets. 

Commercial software programs such as GAMS, CPLEX, and DICOPT weer employed to solve 

formulations for a network of seven cells with three intersections. The complexity of proposed 

formulations would not allow solving them using commercial software for large-scale networks.  

Guilliard et al. (2016) proposed an MILP formulation to minimize total delay and optimize 

signal timing parameters for a network of intersections. Non-homogeneous time steps were 

captured by using CTM, the link transmission model, and the queue transmission model. Networks 

with three, six, and nine intersections with different geometric and symmetry properties were used 

in numerical results. The queue transmission model decreased the computational complexity of 

the formulation in comparison to CTM. However, the solution technique complexity was not 

studied. 

Wada et al. (2017) proposed an MILP formulation to coordinate signal timing plans across 

arterials under deterministic and stochastic demand profiles. The variational theory introduced by 

Daganzo (2005b, 2005a) was employed to analyze delay and create the formulation. The 

variational theory was based on the kinematic wave model introduced by Newell (1993). The 

cross-entropy method was tested on a network of three intersections. The proposed method needed 

substantial modifications, including the addition of turning movements, different phases, and lane 

properties. Moreover, the method was not generalized for different network geometries and 

demand profiles.  

Mohebifard and Hajbabaie (2019) proposed a Benders decomposition technique to solve 

signal timing optimization problems for large-scale networks. The problem was formulated as a 

mixed-integer, non-linear program. The solution technique consisted of a master and a primal 

problem that were optimized iteratively until the desired gap between the upper bound and lower 
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bound was achieved.  The primal problem was converted to a CTM simulation that led to a more 

efficient approach than previous techniques, and the solution optimality was guaranteed in the 

finite number of iterations. However, the approach was not suitable for online decision-making 

because of long run times for finding solutions.  

2.1.2 Heuristic Approaches 

Increasing the decision space by growth in network size and time study could lead to the 

failure of optimization-based approaches. Hence, heuristic approaches have been proposed to offer 

less computational complexity. The genetic algorithm (GA) has been a widely used heuristic for 

solving signal timing problems during the past decades (Abu-Lebdeh and Benekohal, 2000; Ceylan 

and Bell, 2004; Lo and Chow, 2004; Stevanovic et al., 2007). It has also been used to solve 

complex optimization problems in other disciplines (Hajibabai and Ouyang, 2013; Hajibabai and 

Saha, 2019). 

Abu-Lebdeh and Benekohal (1997) developed a non-linear formulation to maximize 

network throughput with time-varying features to coordinate signal plans across an arterial. The 

signal timing problem was optimized under oversaturated conditions to determine offsets and 

green signal durations. A GA was developed to solve the formulation for an arterial of five 

intersections. They considered only one-way streets with no turning movements. The solution 

quality was not evaluated, and the algorithm complexity was a factor of network size.  

In one of the primary works on GA to solve a signal timing optimization problem, Chang 

and Sun (2004) presented a maximal progression possibility operation that was a heuristics to find 

signal timing plans by simultaneously minimizing total delay and the number of stops. This 

algorithm adapted parameters for the most congested intersection of a transportation network and 

applied the same parameters to the rest of the network. A network of 12 oversaturated and 13 
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undersaturated intersections was used for testing. The results showed better performance of this 

algorithm in comparison with TRANSYT-7F and signal timing optimization software. The 

optimality gap for solutions was not examined in this study.  

Zhang et al. (2010) also proposed a GA-based algorithm to solve deterministic and 

stochastic cell-based, mixed-integer linear programs. The problem optimized signal timing plans 

that included a sequence of phases, green signal duration, cycle length, and offsets. In the 

stochastic case, demand was uncertain. The objective was to minimize the total delay of an arterial. 

The algorithm was tested on an arterial consisting of five intersections. In a study by Zhang, Yin, 

and Chen (2013), exposure risk to traffic emissions was incorporated in the proposed model of 

Zhang et al. (2010) by creating a bi-level formulation. The drawbacks of these studies included 

unknown solution properties and substantial growth in the computational complexity of the 

algorithm as the network size increased. 

In 2010, Lertworawanich et al. used goal programming to model and find solutions for 

models with three CTM-based objective functions, including minimization of spillovers, 

minimization of delay, and maximization of throughput. The weighted sum of the objective 

functions was optimized by using a GA-based algorithm. The algorithm was applied to a network 

of nine intersections, and vehicle holding back was not a problem in these solutions because of the 

use of non-linear equations for CTM. However, the computational complexity of the model was 

more than the conventional linearized CTM-based signal timing problems.  

He, Head, and Ding (2011) developed an MILP formulation to minimize total delay by 

determining phase durations on an arterial. This platoon-based model considered transit and 

passenger cars and communication between vehicles and infrastructure. They decreased the 

formulation complexity by creating significant platoons, assuming first come first served, and 
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having limited coordination. The proposed approach to solve the formulation of prioritized 

platoons and determined queues and the algorithm found signal plans by using communications 

data. The approach performed better than SYNCHRO on an arterial of eight intersections and 

under different demand patterns. However, the algorithm could fail as the network size would 

increase because of the required computational efforts.  

Hajbabaie et al. (2011) and Medina et al. (2011) proposed an approach that used a GA, 

evolution strategies, and approximate dynamic programming for finding signal plans in 

oversaturated conditions. They compared their approach performance with the approximate 

dynamic programming. The approximate dynamic programming performed faster than other 

algorithms. The GA generated better results when demand was predefined, whereas dynamic 

programming produced better results when demand was non-predictive. Hajbabaie et al. (2010) 

studied the effects of different left turn policies on network operations in the presence of optimized 

signal timing parameters. Hajbabaie and Benekohal (2011) also studied the effects of using a 

common cycle length on traffic operations in transportation networks. Hajbabaie and Benekohal 

(2011b) and Medina et al. (2013) studied the effects of optimal signal timing parameters on optimal 

metering rates in urban street networks and found significant improvements in traffic operations.  

Putha et al. (2012) applied an ant colony optimization algorithm to coordinate signal plans 

in oversaturated conditions. They found green signal duration by maximizing a weighted network 

throughout and penalizing queues. The researchers compared the ant colony optimization with the 

traditional GA and showed that colony optimization was more efficient in terms of computation 

time. However, the proposed algorithm was not real time.  

Hajbabaie and Benekohal (2015) proposed a formulation for simultaneous optimization of 

signal timing and system optimal traffic assignment problems. The formulation maximized the 
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weighted number of completed trips by considering uncertainty in drivers’ behavior and network 

demand. Cycle lengths, green signal duration, and offsets were determined by optimizing this 

formulation. A GA was used to solve the formulation for a network of 20 intersections and showed 

better results than CORSIM.  

2.2 Decentralized Approaches 

In decentralized control systems (DCS), signal timing problems are decomposed into 

several independent sub-problems, and each sub-problem is assigned to a single controller. Local 

controllers make decisions for individual sub-problems by using a processing unit. In these 

systems, the determined decisions of each sub-problem are not coordinated with other sub-

problems. DCSs can be applied to large-scale networks because each sub-problem has a 

significantly fewer number of decision variables. However, these systems may not provide good 

quality solutions (Chan, 1997).  

Wong and Wong (2003) and Wong and Heydecker (2011) presented mixed-integer linear 

programs to optimize signal timing plans and movements of lanes at isolated intersections. Two 

objective functions used in the modeling were the maximization of capacity and the minimization 

of cycle lengths. Optimizing movement types for each lane improved the performance of 

intersections. However, this optimization required adding many decision variables, and as a result, 

the computational complexity of problems was increased. 

In 2009, Priemer and Friedrich presented a decentralized, phase-based algorithm to find 

optimal phase sequences and estimate queue lengths, assuming the availability of vehicles to the 

infrastructure communication scheme. At each time horizon, an optimization problem was solved 

by using a dynamic programming algorithm and complete enumeration approaches to minimize 

queue lengths at intersections. In this algorithm, controllers did not communicate and collaborate.  



14 

Wongpiromsarn et al. (2012) developed a distributed algorithm to determine the signal 

settings of local controllers separately. The algorithm was designed on the basis of a backpressure 

routing concept (Tassiulas and Ephremides, 1992) used in the context of communication and 

power networks. Each local controller separately selected phases that satisfied several constraints 

for each time slot by using the information on the queue lengths of an intersection. The entering 

demand at each junction was obtained by using data from loop detectors, and the output of lanes 

was set according to the entering demand value. Even though the algorithm performed better than 

adaptive traffic signal controllers, the junctions were not coordinated, so the solutions were locally 

optimal.   

Goodall et al. (2013) presented a decentralized algorithm that used locations, headings, and 

speed in a network that included connected vehicles. They used a rolling-horizon approach to find 

signal timing plans. They also predicted different objective functions for each horizon by using 

microscopic simulation. In low penetration rates, the algorithm did not perform well.  

Adacher et al. (2014) presented a spatial decomposition algorithm to minimize the 

weighted sum of delays at signalized intersections that employed a platoon model. By using a 

distributed consensus algorithm, they segmented the transportation network into nodes. A K-

means algorithm was also implemented to locate controllers in each node. Then, signal timing 

plans and offsets were determined with surrogate measures for intersections in a node. The 

information was shared among intersections of a node with neighboring intersections in a fully 

distributed way. 

Yu et al. (2018) proposed an MILP formulation to minimize total delay by optimizing the 

trajectory of vehicles and signal plans for isolated intersections with CVs. They employed Newel’s 

car-following model (Newell, 2002) to find the lane changing of vehicles, trajectories, arrivals in 
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a platoon, phase sequences, phase durations, and cycle lengths. The communication among 

intersections was ignored, which created problems in the generalization of this approach for the 

network of intersections.  

2.3 Hierarchical Control Systems 

In hierarchical control systems (HCS), signal timing problems are solved as a hierarchy in 

multiple layers. Each layer solves part of the signal timing problem. 

The Sydney Coordinated Adaptive Traffic System (SCATS) was the first adaptive and real-

time hierarchical approach. This approach had two levels: strategic and tactical. First, the signal 

timing problem for a network of at most ten intersections was optimized. Next, they determined 

green splits for each intersection individually by using single controllers to satisfy intersection-

level requirements (Luk, 1984; Sims and Dobinson, 1980). SCATS had a time-consuming pre-

processing step to specify all available split plans with many parameters to be calibrated.  

The Optimized Policies for Adaptive Control (OPAC) strategy is another widely used 

approach proposed by Gartner (1982, 1983) to find signal timing plans in real time. This strategy 

had three layers: local control, coordination, and synchronization. In the first layer, they 

determined the best change policy for a horizon by using the arrival data of vehicles, a prediction 

model, and some information from the third layer. This layer could change decisions on the basis 

of new data feeds. In the second layer, they determined optimal offsets for each intersection. In 

the third layer, they found cycle lengths for all or a group of intersections. Gartner, Pooran, and 

Andrews (2001) used OPAC on the Reston Parkway, which had 16 signalized intersections in 

Reston, Virginia. OPAC was also incorporated into the Real-Time Traffic Adaptive Control 

System (RT-TRACS) proposed by Gartner, Stamatiadis, and Tarnoff (1995), which was a state-
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of-the-art system intended to implement and select traffic control strategies according to traffic 

conditions.  

The Urban Traffic Optimization by Integrated Automation (UTOPIA) (Mauro and 

DiTaronto, 1990) was another hierarchical approach with online and offline optimizations and two 

levels. UTOPIA considered both central and local controllers. The central controllers were 

responsible for the area level to optimize the signal plans in a selected area. The local controllers 

oversaw the local level. They created coordination among neighboring intersections and made 

local decisions that considered central plans and controls. The local and central controllers used a 

rolling horizon technique. The solutions generated by UTOPIA were sub-optimal because they 

combined online and offline optimizations. Note that SCATS, OPAC, and UTOPIA were not able 

to perform well in congested traffic networks.  

Head, Mirchandani, and Sheppard (1992) proposed the Real-Time Hierarchical Optimizing 

Distributed Effective System (RHODES) with four levels. First, they predicted route 

characteristics by using a model introduced by Mirchandani and Soroush (1987). They determined 

a medium-term (hours, days, and weeks), stochastic traffic equilibrium state. Then, they optimized 

signal timing variables offline for the entire network. In the third level, they solved an intersection-

level signal timing problem by signal scheduling and intersection dispatching. They then 

transferred the decisions to controllers. This system could respond to stochastic traffic demand, 

stochastic drivers’ behavior, stochastic transit and pedestrian traffic patterns, speed variations, 

network blockages, and various network characteristics. The objective differed from user-oriented 

to system-oriented functions, depending on the congestion conditions of a network. Having a 

complicated structure that required many techniques and algorithms at each level was the main 

drawback of RHODES.  
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Later, Feng et al. (2015) developed an algorithm that optimized minimum and maximum 

green signal durations, phase sequences, and actual green durations in real time by using connected 

vehicle data. The algorithm minimized total delay and queue length by using VISSIM. The 

algorithm provided less delay in comparison to actuated signal control systems. 

Yang and Jayakrishnan (2015) developed a network-level hierarchical signal control with 

two levels. At the strategy level, an integrated signal timing and traffic assignment formulation 

were optimized. Then, queue weight update and signal optimization problems were solved at the 

control level. This structure decreased the computational complexity of signal timing formulations, 

but the solutions might not provide a close optimality gap. 

Lee, Wong, and Varaiya (2017b, 2017a) developed a hierarchical approach to find time-

variant cycles and green signal durations by optimizing the group-based adaptive signal controllers 

of isolated intersections. They used a max-pressure control algorithm (Varaiya, 2013) that was 

implemented to change the signal plans by using traffic data. This approach outperformed several 

methods. However, information exchange among neighboring intersections was ignored, which 

might help significantly in improving the solution quality.  

2.4 Distributed-Coordinated Control Systems 

Distributed-coordinated control systems (DCCS) distribute the computations among 

various controllers. The controllers exchange information to determine signal plans. A similar 

decomposition concept is applied to traffic metering (Mohebifard and Hajbabaie, 2019b), dynamic 

speed harmonization problems (Tajalli and Hajbabaie, 2018a), and traffic assignment problems 

(Yahia et al., 2018).   

Timotheou et al. (2013) proposed an algorithm with a distributed coordinated framework 

to solve the CTM-based signal timing problem for a network of intersections. They considered a 
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spatial distribution by intersection-level segmentations and temporal decomposition by 

discretizing the study period. The intersection-level problems exchanged information to find near-

optimal solutions in possibly real time. A restrictive assumption was the consideration of only one-

way streets. The sequential procedure for optimizing intersection-level problems was not also 

efficient. 

Timotheou et al. (2015) employed the alternating direction method of multipliers (Boyd et 

al., 2011) to enhance the algorithm developed by Timotheou et al. (2013).  This algorithm 

considered temporal and spatial decompositions with steps. The integer decision variables of signal 

timing formulation were relaxed, and the formulation was solved by using the alternating direction 

method of multipliers. Then, they retrieved the decision variables by rounding. The alternating 

direction method of multipliers was iterative with an unknown convergence rate. Hence, finding 

solutions in real time might fail. Also, the solutions after rounding might not satisfy all constraints. 

Mehrabipour and Hajbabaie (2017) proposed a distributed and coordinated solution 

technique to solve a mixed-integer linear program and determine signal timing plans. The approach 

first distributed the formulation into intersection-level sub-problems to reduce the number of 

decision variables and constraints in each optimization. Then, the sub-problems shared information 

about their capacity and outgoing vehicles with their neighbors. The approach was real time and 

could generate solutions with a 2 percent gap with the optimal solution. However, the approach 

could not consider connected vehicles.  

Islam and Hajbabaie (2017) implemented a distributed-coordinated approach for a link-

level signal timing optimization formulation that assumed a 100 percent connected vehicle 

environment and the availability of road-side units at intersections. The objective function of the 

formulation was the maximization of throughput and the minimization of queue lengths. Required 
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information for the signal timing optimization formulation and coordination among isolated 

intersections were obtained by using VISSIM. However, the optimality properties of solutions 

were not discussed in this paper. Islam et al. (2020) extended this approach to work with various 

connected vehicle market penetration rates and observed significant improvement in traffic 

operation with an increase in the connected vehicle market penetration rate. Islam et al. (2020a) 

further extended this approach to minimize energy consumption while maintaining the same 

mobility level in a transportation network. Islam et al. (2021) studied the effects of connectivity 

and traffic observability on adaptive traffic control by using the approach presented in Islam et al. 

(2020). They also studied the effects of connectivity on travel time reliability following the 

approaches presented by Aghdashi et al. (2015, 2013), Hajbabaie et al. (2016), and Zegeer et al. 

(2014). 

Mohebifard et al. (2019) presented a real-time, distributed, coordinated solution technique 

to find the optimal value of signal timing variables at signalized intersections and metering gates. 

The problem formulation was a mixed-integer, non-linear program. The approach decomposed the 

formulation by using intersection-level spatial decomposition. Each sub-network solved an 

optimization problem for an intersection and broadcasted the information to its neighboring sub-

networks. This study also considered different penetration rates for connected vehicles. With a 

similar structure, Tajalli et al. (2020) proposed a distributed and coordinated technique to 

determine signal timing plans and speeds simultaneously.  

Torabi et al. (2020) proposed a distributed, multi-agent approach to find signal timing 

plans. Each agent was in charge of one intersection, and it worked cooperatively with other agents 

to determine signal timing variables and consider network changes. The agent presented a new 
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signal plan if the intersection was congested and sent the information to other agents. Determining 

the severity of congestion and signal splits required determining many user input parameters. 

Mirheli et al. (2018) developed a methodology to optimize the trajectory of connected 

automated vehicles while approaching a signal-free intersection. They found solutions by using a 

centralized architecture enabled with a Monte Carlo tree search algorithm following the approach 

presented by Mirheli and Hajibabai (2020). Mirheli et al. (2019) extended this approach by 

developing a distributed, consensus-based approach that utilized the existing computational power 

in each connected automated vehicle. As a result of using the distributed approach, trajectories 

were found in real time. Niroumand et al. (2020a) introduced a new phase, called the white phase, 

to accommodate connected automated vehicles more efficiently with fewer phase transitions. 

Niroumand et al. (2020b) studied the effects of the white phase on intersection operations and 

found significant improvements as a result of using it. Tajalli and Hajbabaie (2021) developed a 

lagrangian-based approach to simultaneously optimize signal timing parameters and the 

trajectories of connected automated vehicles and found significant improvement in traffic 

operations. Mohebifard and Hajbabaie (2021) developed a methodology to control the trajectory 

of connected automated vehicles in roundabouts in the presence of human-driven vehicles. They 

observed significant improvements in traffic operations when the trajectories of automated 

vehicles were optimized (Mohebifard and Hajbabaie, 2020). 

2.5  Summary 

Different approaches have been developed to solve signal timing optimization problems. 

CCSs are the only systems that can find globally optimal solutions. They are classified into exact 

and heuristic algorithms and solve signal timing problems centrally. Because network size and 

study periods affect the computational complexity of these systems, they are intractable even for 
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medium-sized networks. Then, there are HCSs and DCCSs, which are computationally more 

efficient, but their solutions are not optimal. Moreover, HCSs have complicated structures and 

need costly infrastructures, and DCCSs either have restrictive assumptions about network topology 

or are not real time. DCCSs can provide real-time solutions, but solutions are not near-optimal 

because sub-problems do not cooperate.  

In this project, we proposed a distributed optimization and coordination algorithm that 

outperforms the existing algorithms by considering trade-offs between run-time and quality of 

solutions. While the solutions are generated in real-time, they are very close to optimal values. 

Furthermore, the algorithm can be applied to real-world and generalized networks and does not 

involve any restrictive assumptions about network topology and network size, assumptions about 

demand patterns, and requirements of costly infrastructure and complicated frameworks. The 

algorithm includes decomposition and coordination schemes to reduce the computational 

complexity of problems and avoid finding locally optimal solutions, respectively.  
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3 Problem Formulation 

3.1 Introduction 

The signal timing problem is modeled as a mixed-integer, non-linear, multi-modal 

formulation in this chapter. This formulation uses cell transmission model (CTM) traffic dynamics 

introduced by Daganzo (1994 and 1995). CTM creates a piecewise linear relationship between 

flow and density. CTM can simulate traffic flow across a network and capture shockwaves, queue 

properties, and speed. The research team had used CTM in previous work for speed harmonization 

(Tajalli and Hajbabaie, 2018b), traffic metering (Mohebifard and Hajbabaie, 2018a), and traffic 

assignment (Mehrabipour et al., 2019). In CTM, roadways or links are divided into homogeneous 

segments called cells, and the desired study period is discretized into several time intervals named 

time steps. Moreover, a cell length is equal to the distance that a vehicle can travel by free-flow 

speed in a single time step.  

3.2 Notations 

Figure 3.1shows an intersection cell representation with different types of cells, and table 

3.1 shows the definitions of all sets, decision variables, and parameters used in the problem 

formulation. 

 

Figure 3.1.  A cell-based representation of an intersection 
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Table 3.1.  The definitions of sets, decision variables, and parameters  
Sets: 
𝑇𝑇 Set of all time steps 
𝐶𝐶 Set of all network cells 
𝐶𝐶𝑂𝑂 Set of all source cells 
𝐶𝐶𝑆𝑆 Set of all sink cells 
𝐶𝐶𝐼𝐼 Set of all intersection cells 
𝐼𝐼 Set of all intersections 
𝑀𝑀𝑜𝑜  Set of all classes of vehicle 
𝐵𝐵  Set of all buses  
𝑃𝑃(𝑏𝑏)  Set of cells 𝐶𝐶 in the path of bus 𝑏𝑏 ∈ 𝐵𝐵 
𝐸𝐸(𝑘𝑘) Set of all intersection cells of intersection 𝑘𝑘 ∈ 𝐼𝐼 with through and left-turning movements 

𝑂𝑂(𝑖𝑖) Set of all cells of intersection 𝑘𝑘 ∈ 𝐼𝐼 with conflicting through and left-turning movements with 
movement 𝑖𝑖 ∈ 𝐸𝐸(𝑘𝑘) 

𝑅𝑅 Set of all concurrent through and right turn movement with adjacent movements 
𝑃𝑃(𝑖𝑖) Set of all predecessor cells of cell 𝑖𝑖 ∈ 𝐶𝐶 
𝑆𝑆(𝑖𝑖) Set of all successor cells of cell 𝑖𝑖 ∈ 𝐶𝐶 
Decision Variables: 
𝑔𝑔𝑖𝑖𝑡𝑡 A binary variable for signal status at cell 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼  at time step 𝑡𝑡 ∈ 𝑇𝑇. If green, 𝑔𝑔𝑖𝑖𝑡𝑡 = 1. Otherwise 𝑔𝑔𝑖𝑖𝑡𝑡 = 0. 
𝑥𝑥𝑖𝑖
𝑡𝑡,𝑚𝑚 Number of vehicles in cell 𝑖𝑖 ∈ 𝐶𝐶 at time step 𝑡𝑡 ∈ 𝑇𝑇 from class 𝑚𝑚 ∈ 𝑀𝑀𝑜𝑜 

𝑦𝑦𝑖𝑖𝑖𝑖
𝑡𝑡,𝑚𝑚 Number of vehicles going from cell 𝑖𝑖 ∈ 𝐶𝐶  to downstream cell 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖) at time step 𝑡𝑡 ∈ 𝑇𝑇 from class 

𝑚𝑚 ∈ 𝑀𝑀𝑜𝑜 
𝑣𝑣𝑖𝑖𝑡𝑡   Space-mean speed in cell 𝑖𝑖 ∈ 𝐶𝐶 at time step 𝑡𝑡 ∈ 𝑇𝑇 
𝑤𝑤𝑖𝑖𝑡𝑡  Dummy variable. It takes 1 if there is a bus in cell 𝑖𝑖 ∈ 𝐶𝐶 at time step 𝑡𝑡 ∈ 𝑇𝑇, and 0 otherwise 
𝑤𝑤𝑏𝑏,𝑖𝑖
𝑡𝑡   Dummy variable. It takes 1  if bus 𝑏𝑏 ∈ 𝐵𝐵 is in cell 𝑖𝑖 ∈ 𝐶𝐶 at time step 𝑡𝑡 ∈ 𝑇𝑇, and 0 otherwise 

𝜒𝜒𝑏𝑏𝑡𝑡   Position of a bus 𝑏𝑏 ∈ 𝐵𝐵 at time step 𝑡𝑡 ∈ 𝑇𝑇 
𝑣𝑣𝑏𝑏,𝑖𝑖
𝑡𝑡   Speed of a bus 𝑏𝑏 ∈ 𝐵𝐵 at cell 𝑖𝑖 ∈ 𝐶𝐶 at time step 𝑡𝑡 ∈ 𝑇𝑇  

Parameters: 
𝑑𝑑𝑖𝑖
𝑡𝑡,𝑚𝑚 Demand on source cell 𝑖𝑖 ∈ 𝐶𝐶𝑂𝑂 at time step 𝑡𝑡 ∈ 𝑇𝑇 for class 𝑚𝑚 ∈ 𝑀𝑀𝑜𝑜 
𝐹𝐹𝑖𝑖 Saturation flow rate of cell 𝑖𝑖 ∈ 𝐶𝐶 
𝑓𝑓𝑖𝑖𝑡𝑡 Variable saturation flow rate of intersection cell 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼 at time step 𝑡𝑡 ∈ 𝑇𝑇 
𝑀𝑀𝑖𝑖 Maximum number of vehicles that cell 𝑖𝑖 ∈ 𝐶𝐶 can accommodate 
𝑟𝑟𝑖𝑖
𝑡𝑡,𝑚𝑚 Turning percentage at intersection cell 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼 at time step 𝑡𝑡 ∈ 𝑇𝑇 for class 𝑚𝑚 ∈ 𝑀𝑀𝑜𝑜 
𝑓𝑓 Reduction factor of saturation flow rate due to start-up lost time 
𝐿𝐿𝑖𝑖  Starting coordinate of cell 𝑖𝑖 ∈ 𝐶𝐶  
𝑈𝑈𝑖𝑖  Ending coordinate of cell 𝑖𝑖 ∈ 𝐶𝐶  
𝜒𝜒𝑏𝑏0  Initial position of bus 𝑏𝑏 ∈ 𝐵𝐵 at time step 𝑡𝑡 = 0 
𝑣𝑣𝑓𝑓𝑐𝑐   Free-flow speed of passenger cars  
𝑣𝑣𝑓𝑓𝑏𝑏   Free-flow speed of buses 
𝜌𝜌  Ratio of the backward shockwave speed to the free flow speed 
𝐿𝐿𝑚𝑚  Length of a vehicle of class 𝑚𝑚 ∈ 𝑀𝑀𝑜𝑜 
𝛼𝛼𝑚𝑚  Passenger occupancy of a vehicle of class 𝑚𝑚 ∈ 𝑀𝑀𝑜𝑜 
𝜓𝜓𝑚𝑚  Occupancy ratio of vehicle class 𝑚𝑚 ∈ 𝑀𝑀𝑜𝑜 relative to passenger car 
ℳ  Big number 
∆𝑋𝑋  Length of a cell that is a space traveled by a vehicle in free-flow speed 𝑣𝑣𝑓𝑓𝑐𝑐  within time horizon ∆𝑡𝑡 
𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚   Maximum green time 
𝐺𝐺𝑚𝑚𝑖𝑖𝑚𝑚   Minimum green time 
𝑥𝑥�𝑖𝑖𝑡𝑡 Occupancy of cell 𝑗𝑗 ∈ 𝐶𝐶 at time step 𝑡𝑡 ∈ 𝑇𝑇 given from CTM simulation run 
𝑦𝑦�𝑖𝑖𝑖𝑖𝑡𝑡  Number of vehicles flowing from cell  𝑖𝑖 ∈ 𝐶𝐶 to cell 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖) at time step 𝑡𝑡 ∈ 𝑇𝑇 obtained from CTM  
𝛿𝛿𝑖𝑖𝑖𝑖 Kronecker delta,  𝛿𝛿𝑖𝑖𝑖𝑖 = 1 when 𝑖𝑖 = 𝑗𝑗. Otherwise 𝛿𝛿𝑖𝑖𝑖𝑖 = 0. 
∆𝑇𝑇 Time horizon 
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3.3 Optimization Model 

The objective function of the model is to minimize the total travel time when vehicle types 

are considered, as shown in Equation (3-1). This equation is the summation of the number of 

vehicles 𝑥𝑥𝑖𝑖
𝑡𝑡,𝑚𝑚 in all cells 𝑖𝑖 ∈ 𝐶𝐶 except for sink cells 𝑖𝑖 ∈ 𝐶𝐶𝑆𝑆, multiplied by the passenger occupancy 

𝛼𝛼𝑚𝑚 over all time steps 𝑡𝑡 ∈ 𝑇𝑇 and vehicle types 𝑚𝑚 ∈ 𝑀𝑀𝑜𝑜. The passenger occupancy 𝛼𝛼𝑚𝑚 shows the 

possible number of people in each vehicle class.  

max ∑ ∑ ∑ 𝛼𝛼𝑚𝑚𝑥𝑥𝑖𝑖
𝑡𝑡,𝑚𝑚

𝑖𝑖∈𝐶𝐶\𝐶𝐶𝑆𝑆𝑡𝑡∈𝑇𝑇𝑚𝑚∈𝑀𝑀𝑀𝑀   (3-1) 

  
Constraint (3-2) ensures the conservation of flow for ordinary cells 𝑖𝑖 ∈ 𝐶𝐶 \ {𝐶𝐶𝑆𝑆 ,𝐶𝐶𝑂𝑂}, source 

cells 𝑖𝑖 ∈ 𝐶𝐶𝑂𝑂, and sink cells 𝑖𝑖 ∈ 𝐶𝐶𝑆𝑆. Let 𝛿𝛿𝑖𝑖𝑖𝑖 represents Kronecker delta, and 𝛿𝛿𝑖𝑖𝑖𝑖 = 1 when 𝑖𝑖 = 𝑗𝑗. 

Otherwise, 𝛿𝛿𝑖𝑖𝑖𝑖 = 0. Entry demand to source cell 𝑖𝑖 ∈ 𝐶𝐶𝑂𝑂 at time step 𝑡𝑡 ∈ 𝑇𝑇 is denoted by 𝑑𝑑𝑖𝑖𝑡𝑡. In this 

conservation flow constraint, the difference in cell occupancy in consecutive time steps is equal to 

the difference in incoming and outgoing flows from that cell. Note that the incoming flow to source 

cells is demand, and sink cells do not have any outgoing flow.  

(𝛿𝛿𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑖𝑖)∑ 𝑦𝑦𝑘𝑘𝑖𝑖
𝑡𝑡,𝑚𝑚 −𝑘𝑘∈𝑃𝑃(𝑖𝑖) (𝛿𝛿𝑖𝑖𝑀𝑀 + 𝛿𝛿𝑖𝑖𝑖𝑖)∑ 𝑦𝑦𝑖𝑖𝑖𝑖

𝑡𝑡,𝑚𝑚 +𝑖𝑖∈𝑆𝑆(𝑖𝑖)

𝑑𝑑𝑖𝑖𝑡𝑡(𝛿𝛿𝑖𝑖𝑀𝑀) = (𝛿𝛿𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑀𝑀 + 𝛿𝛿𝑖𝑖𝑖𝑖)(𝑥𝑥𝑖𝑖𝑡𝑡+1 − 𝑥𝑥𝑖𝑖𝑡𝑡  )  

∀ 𝑡𝑡 ∈ 𝑇𝑇, 𝑖𝑖 ∈  𝐶𝐶, 𝑙𝑙 ∈ 𝐶𝐶 \{𝐶𝐶𝑆𝑆 ,𝐶𝐶𝑂𝑂}, 

𝑜𝑜 ∈  𝐶𝐶𝑂𝑂, 𝑠𝑠 ∈  𝐶𝐶𝑆𝑆,𝑚𝑚 ∈ 𝑀𝑀𝑜𝑜 

(3-2) 

   
The outgoing flow ∑ 𝑦𝑦𝑖𝑖𝑖𝑖

𝑡𝑡,𝑚𝑚
𝑖𝑖∈𝑆𝑆(𝑖𝑖)  of cell 𝑖𝑖 ∈ 𝐶𝐶\{𝐶𝐶𝑖𝑖} at time step 𝑡𝑡 ∈ 𝑇𝑇 for class 𝑚𝑚 ∈ 𝑀𝑀𝑜𝑜 

should be less than or equal to the existing vehicles 𝑥𝑥𝑖𝑖
𝑡𝑡,𝑚𝑚 in that cell, as shown in Constraint (3-3). 

Because cell 𝑖𝑖 ∈ 𝐶𝐶\{𝐶𝐶𝑖𝑖} can have more than one successor cell 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖), the flow of all leaving 

links from the cell are accumulated to find the outgoing flow.  

∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑡𝑡,𝑚𝑚 ≤𝑖𝑖∈𝑆𝑆(𝑖𝑖) 𝑥𝑥𝑖𝑖

𝑡𝑡,𝑚𝑚  ∀ 𝑡𝑡 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐶𝐶\{𝐶𝐶𝑖𝑖} 𝑚𝑚 ∈ 𝑀𝑀𝑜𝑜 (3-3) 
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The outgoing flow ∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑡𝑡,𝑚𝑚

𝑖𝑖∈𝑆𝑆(𝑖𝑖)𝑚𝑚∈𝑀𝑀𝑀𝑀  of cell 𝑖𝑖 ∈ 𝐶𝐶 at time step 𝑡𝑡 ∈ 𝑇𝑇 is limited to the 

saturation flow rate 𝐹𝐹𝑖𝑖 of the cell when no bus is available in that cell, as shown in Constraint (3-

4). Note that the saturation flow rate is decreased by a factor of 𝜌𝜌𝑖𝑖 when at least one bus exists in 

that cell. Constraint (3-5) forces a similar limitation but for the incoming flow ∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑡𝑡,𝑚𝑚

𝑖𝑖∈𝑃𝑃(𝑖𝑖)𝑚𝑚∈𝑀𝑀𝑀𝑀  

to cell 𝑗𝑗 ∈ 𝐶𝐶. 

∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑡𝑡,𝑚𝑚 ≤𝑖𝑖∈𝑆𝑆(𝑖𝑖)𝑚𝑚∈𝑀𝑀𝑀𝑀 𝑤𝑤𝑖𝑖

𝑡𝑡𝜌𝜌𝑖𝑖𝐹𝐹𝑖𝑖 + (1 − 𝑤𝑤𝑖𝑖
𝑡𝑡)𝐹𝐹𝑖𝑖  ∀ 𝑖𝑖 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇 (3-4) 

∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑡𝑡,𝑚𝑚 ≤𝑖𝑖∈𝑃𝑃(𝑖𝑖)𝑚𝑚∈𝑀𝑀𝑀𝑀 𝑤𝑤𝑖𝑖

𝑡𝑡𝜌𝜌𝑖𝑖𝐹𝐹𝑖𝑖 + (1 − 𝑤𝑤𝑖𝑖
𝑡𝑡)𝐹𝐹𝑖𝑖  ∀ 𝑗𝑗 ∈ 𝐶𝐶, 𝑡𝑡 ∈  𝑇𝑇 (3-5) 

   

The incoming flow ∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑡𝑡,𝑚𝑚

𝑖𝑖∈𝑃𝑃(𝑖𝑖)𝑚𝑚∈𝑀𝑀𝑀𝑀  to cell 𝑗𝑗 ∈ 𝐶𝐶 at time step 𝑡𝑡 ∈ 𝑇𝑇 should be limited 

by  the available capacity of that cell, 𝑀𝑀𝑖𝑖 − ∑ 𝜓𝜓𝑚𝑚 × 𝑥𝑥𝑖𝑖
𝑡𝑡,𝑚𝑚

𝑚𝑚∈𝑀𝑀 , as shown in Constraint (3-6). The 

capacity of cell 𝑗𝑗 ∈ 𝐶𝐶 is denoted by 𝑀𝑀𝑖𝑖. Also, the vacant capacity of cell 𝑗𝑗 ∈ 𝐶𝐶 that can be occupied 

by vehicles is shown by 𝑀𝑀𝑖𝑖 − ∑ 𝜓𝜓𝑚𝑚 × 𝑥𝑥𝑖𝑖
𝑡𝑡,𝑚𝑚

𝑚𝑚∈𝑀𝑀 . The conversion factor to determine the occupied 

space of the cell in terms of passenger cars is denoted by 𝜓𝜓𝑚𝑚. Note that capacity of source and 

sink cells is set to a big arbitrary number. 

∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑡𝑡,𝑚𝑚

𝑖𝑖∈𝑃𝑃(𝑖𝑖)𝑚𝑚∈𝑀𝑀𝑀𝑀 ≤ 𝑀𝑀𝑖𝑖 − ∑ 𝜓𝜓𝑚𝑚 × 𝑥𝑥𝑖𝑖
𝑡𝑡,𝑚𝑚

𝑚𝑚∈𝑀𝑀   ∀ 𝑡𝑡 ∈ 𝑇𝑇, 𝑗𝑗 ∈ 𝐶𝐶 (3-6) 

   
Equation (3-7) computes the space-mean speed 𝑣𝑣𝑖𝑖𝑡𝑡+1 for cell 𝑖𝑖 ∈ 𝐶𝐶 at time step 𝑡𝑡 + 1. This 

speed is found by dividing the available space in a cell by the duration of the time step, as proposed 

by Aziz (2019). The available space is the difference between the cell length ∆𝑋𝑋 and the length 

that is occupied by vehicles. The occupied length is found by multiplying the average vehicle 

length 𝐿𝐿𝑚𝑚 by the difference in the number of vehicles 𝑥𝑥𝑖𝑖
𝑡𝑡,𝑚𝑚 in cell 𝑖𝑖 ∈ 𝐶𝐶𝑚𝑚 and the total number of 

vehicles  ∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑡𝑡,𝑚𝑚

𝑖𝑖∈𝛤𝛤(𝑖𝑖)  that exit that cell toward cell 𝑗𝑗 ∈ 𝛤𝛤(𝑖𝑖) at time step 𝑡𝑡 ∈ 𝑇𝑇. 



27 

𝑣𝑣𝑖𝑖𝑡𝑡+1 =
∆𝑋𝑋−�∑ �𝑚𝑚𝑖𝑖

𝑡𝑡,𝑚𝑚−∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑡𝑡,𝑚𝑚

𝑖𝑖∈𝛤𝛤(𝑖𝑖) �𝑚𝑚∈𝑀𝑀 ×𝐿𝐿𝑚𝑚�

∆𝑡𝑡
  ∀𝑡𝑡 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐶𝐶  (3-7) 

   
Previous research on multiclass CTM (Liu et al., 2015; Mesa-Arango and Ukkusuri, 2014) 

has assumed that buses move slower than passenger cars in the system. Equation (3-8) ensures that 

the space-mean speed 𝑣𝑣𝑏𝑏,𝑖𝑖
𝑡𝑡  of bus 𝑏𝑏 ∈ 𝐵𝐵 in non-intersection cell 𝑖𝑖 ∈ 𝐶𝐶\𝐶𝐶𝐼𝐼 at time step 𝑡𝑡 is the 

minimum of the space-mean speed 𝑣𝑣𝑖𝑖𝑡𝑡 in that cell and the free flow speed of buses 𝑣𝑣𝑓𝑓𝑏𝑏. 

𝑣𝑣𝑏𝑏,𝑖𝑖
𝑡𝑡 = min(𝑣𝑣𝑖𝑖𝑡𝑡, 𝑣𝑣𝑓𝑓𝑏𝑏) ∀𝑡𝑡 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐶𝐶\𝐶𝐶𝐼𝐼 , 𝑏𝑏 ∈ 𝐵𝐵   (3-8) 

   
Equation (3-9) finds the space-mean speed 𝑣𝑣𝑏𝑏,𝑖𝑖

𝑡𝑡  of a bus at intersection cell 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼 based on 

the signal status 𝑔𝑔𝑖𝑖
𝑡𝑡,𝑚𝑚 of the corresponding cell. The speed of a bus at an intersection cell takes the 

minimum of space mean speed in that cell and the free-flow speed of buses if the signal is green; 

otherwise, it will be zero. 

𝑣𝑣𝑏𝑏,𝑖𝑖
𝑡𝑡 = min(𝑔𝑔𝑖𝑖𝑡𝑡 × 𝑣𝑣𝑖𝑖𝑡𝑡 , 𝑣𝑣𝑓𝑓𝑏𝑏) ∀𝑡𝑡 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼 , 𝑏𝑏 ∈ 𝐵𝐵  (3-9) 

   
Equation (3-10) updates the position 𝜒𝜒𝑏𝑏𝑡𝑡  of bus 𝑏𝑏 ∈ 𝐵𝐵 at time step 𝑡𝑡 ∈ 𝑇𝑇 using its position 

𝜒𝜒𝑏𝑏𝑡𝑡−1 and speed 𝑣𝑣𝑏𝑏,𝑖𝑖
𝑡𝑡−1 in the previous time step. When bus 𝑏𝑏 ∈ 𝐵𝐵 exists in cell 𝑖𝑖 ∈ 𝑃𝑃(𝑏𝑏) at time step 

𝑡𝑡, 𝑤𝑤𝑏𝑏,𝑖𝑖
𝑡𝑡  will be 1.0, and we ensure that the position 𝜒𝜒𝑏𝑏𝑡𝑡  is updated. 

𝜒𝜒𝑏𝑏𝑡𝑡 = 𝜒𝜒𝑏𝑏𝑡𝑡−1 + 𝑤𝑤𝑏𝑏𝑖𝑖
𝑡𝑡−1 × 𝑣𝑣𝑏𝑏,𝑖𝑖

𝑡𝑡−1 × ∆𝑡𝑡 ∀𝑡𝑡 ∈ 𝑇𝑇,  𝑖𝑖 ∈ 𝑃𝑃(𝑏𝑏), 𝑏𝑏 ∈ 𝐵𝐵  (3-10) 

   
Equation (3-11) sets an initial position 𝜒𝜒𝑏𝑏𝑡𝑡=0 for each bus in the network. 

𝜒𝜒𝑏𝑏𝑡𝑡=0 = 𝜒𝜒𝑏𝑏0 ∀𝑏𝑏 ∈ 𝐵𝐵  (3-11) 
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Constraints (3-12) and (3-13) force the value of the dummy variable 𝑤𝑤𝑖𝑖
𝑡𝑡 to be 1.0 when at 

least one bus exists in cell 𝑖𝑖 ∈ 𝐶𝐶 at time step 𝑡𝑡 ∈ 𝑇𝑇. Note that 𝑤𝑤𝑏𝑏,𝑖𝑖
𝑡𝑡  takes 1.0 when there is a bus 

𝑏𝑏 ∈ 𝐵𝐵 in cell 𝑖𝑖 ∈ 𝑃𝑃(𝑏𝑏) at time step 𝑡𝑡 ∈ 𝑇𝑇. In fact, it is 1.0 when the bus is located in interval [𝐿𝐿𝑖𝑖,𝑈𝑈𝑖𝑖].  

𝑤𝑤𝑖𝑖
𝑡𝑡 ≤ ∑ 𝑤𝑤𝑏𝑏,𝑖𝑖

𝑡𝑡
𝑏𝑏∈𝐵𝐵𝑛𝑛    ∀𝑡𝑡 ∈ 𝑇𝑇,∀𝑖𝑖 ∈ 𝐶𝐶,𝑚𝑚 = bus (3-12) 

𝑤𝑤𝑖𝑖
𝑡𝑡 ≥ 𝑤𝑤𝑏𝑏,𝑖𝑖

𝑡𝑡  ∀𝑡𝑡 ∈ 𝑇𝑇,∀𝑖𝑖 ∈ 𝐶𝐶,∀𝑏𝑏 ∈ 𝐵𝐵 (3-13) 

   
Equation (3-14) finds the number of buses 𝑥𝑥𝑖𝑖

𝑡𝑡,𝑚𝑚=bus in cell 𝑖𝑖 ∈ 𝐶𝐶 at time step 𝑡𝑡 ∈ 𝑇𝑇.   

𝑥𝑥𝑖𝑖
𝑡𝑡,𝑚𝑚 = � 𝑤𝑤𝑏𝑏,𝑖𝑖

𝑡𝑡

𝑏𝑏∈𝐵𝐵
 ∀𝑡𝑡 ∈ 𝑇𝑇,∀𝑖𝑖 ∈ 𝐶𝐶,  𝑚𝑚 =  bus (3-14) 

   
The turning movement proportion 𝑟𝑟𝑖𝑖

𝑡𝑡,𝑚𝑚 at intersection cell 𝑗𝑗 ∈ 𝐶𝐶𝐼𝐼 at time step 𝑡𝑡 ∈ 𝑇𝑇 for 

vehicle type 𝑚𝑚 ∈ 𝑀𝑀𝑜𝑜 is assumed to be given as an input. We denote 𝐶𝐶𝐼𝐼 as the set of intersection 

cells. The total outflow ∑ 𝑦𝑦𝑖𝑖𝑘𝑘
𝑡𝑡,𝑚𝑚

𝑘𝑘∈𝑆𝑆(𝑖𝑖)  of intersection cell 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼 is distributed among all outgoing 

links 𝑦𝑦𝑖𝑖𝑖𝑖
𝑡𝑡,𝑚𝑚, 𝑖𝑖 ∈ 𝑃𝑃(𝑗𝑗) originating from that cell according to turning proportion 𝑟𝑟𝑖𝑖

𝑡𝑡,𝑚𝑚, as shown in 

Constraint (3-15). The turning percentages can be constant or variable over time steps. In the 

constant case, the time index should be removed. 

𝑦𝑦𝑖𝑖𝑖𝑖
𝑡𝑡,𝑚𝑚 ≤ 𝑟𝑟𝑖𝑖

𝑡𝑡,𝑚𝑚 � 𝑦𝑦𝑖𝑖𝑘𝑘
𝑡𝑡,𝑚𝑚

𝑘𝑘∈𝑆𝑆(𝑖𝑖)

 ∀ 𝑡𝑡 ∈ 𝑇𝑇, 𝑗𝑗 ∈ 𝐶𝐶𝐼𝐼 , 𝑖𝑖 ∈ 𝑃𝑃(𝑗𝑗) (3-15) 

   

Constraint (3-16) ensures that at most two non-conflicting movements from the set of 

through-movements and left-turning movements 𝐸𝐸(𝑘𝑘) at intersection 𝑘𝑘 ∈ 𝐼𝐼 will receive a green 

signal indication at time step 𝑡𝑡 ∈ 𝑇𝑇. We then limit only one of the conflicting movements to have 

a green indication for each time step in Constraint (3-17). Equation (3-18) sets the signal indication 

of the concurrent through-movements and right turning movements (𝑖𝑖, 𝑗𝑗) ∈ 𝑅𝑅 equal.  
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∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖∈𝐸𝐸(𝑘𝑘) ≤ 2  ∀𝑘𝑘 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇 (3-16) 

𝑔𝑔𝑖𝑖𝑡𝑡 + 𝑔𝑔𝑖𝑖𝑡𝑡 ≤ 1 ∀𝑘𝑘 ∈ 𝐼𝐼, 𝑖𝑖 ∈ 𝐸𝐸(𝑘𝑘), 𝑗𝑗 ∈ 𝑂𝑂(𝑖𝑖), 𝑡𝑡 ∈ 𝑇𝑇 (3-17) 

𝑔𝑔𝑖𝑖𝑡𝑡 = 𝑔𝑔𝑖𝑖𝑡𝑡 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑅𝑅, 𝑡𝑡 ∈ 𝑇𝑇 (3-18) 

   

Equation (3-19) determines the variable saturation flow rate 𝑓𝑓𝑖𝑖𝑡𝑡 of intersection cells based 

on signal status. The variable saturation flow rate 𝑓𝑓𝑖𝑖𝑡𝑡 is set to be the constant saturation flow rate 

𝐹𝐹𝑖𝑖 when the signal of the cell is green 𝑔𝑔𝑖𝑖𝑡𝑡 = 1. 

𝑞𝑞𝑖𝑖𝑡𝑡 = 𝑔𝑔𝑖𝑖𝑡𝑡𝐹𝐹𝑖𝑖 ∀𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼 , 𝑡𝑡 ∈ 𝑇𝑇 (3-19) 

   

Constraints (3-20) and (3-21) ensure a maximum and minimum green time for through-

movements and left-turning movements in cell 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼, respectively. 

∑ 𝑔𝑔𝑖𝑖
𝜁𝜁𝑡𝑡+𝐺𝐺𝑚𝑚𝑚𝑚𝑥𝑥+1

𝜁𝜁=𝑡𝑡 ≤ 𝐺𝐺𝑚𝑚𝑚𝑚𝑥𝑥  ∀𝑘𝑘 ∈ 𝐼𝐼, 𝑖𝑖 ∈ 𝐸𝐸(𝑘𝑘), 𝑡𝑡 ∈ 𝑇𝑇, 𝑡𝑡 ≤ |𝑇𝑇| − 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 (3-20) 

∑ 𝑔𝑔𝑖𝑖
𝜁𝜁𝑡𝑡+𝐺𝐺𝑚𝑚𝑖𝑖𝑛𝑛

𝜁𝜁=𝑡𝑡+1 ≥ (𝑔𝑔𝑖𝑖𝑡𝑡+1 − 𝑔𝑔𝑖𝑖𝑡𝑡)𝐺𝐺𝑚𝑚𝑖𝑖𝑚𝑚  ∀𝑘𝑘 ∈ 𝐼𝐼, 𝑖𝑖 ∈ 𝐸𝐸(𝑘𝑘), 𝑡𝑡 ∈ 𝑇𝑇, 𝑡𝑡 ≤ |𝑇𝑇| − 𝐺𝐺𝑚𝑚𝑖𝑖𝑚𝑚 (3-21) 

   

When a signal indication changes from red to green, the saturation flow rate in intersection 

cells is reduced to account for the start-up lost time, as shown in Constraint (3-22). Let 𝑓𝑓 denote a 

reduction factor in the saturation flow rate due to a start-up lost time. When 𝑔𝑔𝑖𝑖𝑡𝑡+1 = 1 and 𝑔𝑔𝑖𝑖𝑡𝑡 = 0, 

Constraint (3-22) is activated, and the outflow ∑ ∑ 𝑦𝑦𝑖𝑖𝑗𝑗
𝑡𝑡+1,𝑚𝑚

𝑗𝑗∈𝑆𝑆(𝑖𝑖)𝑚𝑚∈𝑀𝑀𝑀𝑀  of cell 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼 at time step 𝑡𝑡 ∈

𝑇𝑇 is limited to a smaller number than 𝐹𝐹𝑖𝑖. This means that the outflow of the corresponding cell is 

reduced. 

∑ ∑ 𝑦𝑦𝑖𝑖𝑗𝑗
𝑡𝑡+1,𝑚𝑚 ≤𝑗𝑗∈𝑆𝑆(𝑖𝑖)𝑚𝑚∈𝑀𝑀𝑀𝑀 𝐹𝐹𝑖𝑖 − 𝐹𝐹𝑖𝑖𝑓𝑓(𝑔𝑔𝑖𝑖

𝑡𝑡+1 −𝑔𝑔𝑖𝑖
𝑡𝑡)  ∀ 𝑡𝑡 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼  (3-22) 

Constraints (3-23) and (3-24) ensure the non-negativity of the number of vehicles 𝑥𝑥𝑖𝑖𝑡𝑡 in cell 

𝑖𝑖 ∈ 𝐶𝐶 at time step 𝑡𝑡 ∈ 𝑇𝑇 and the flow of vehicles 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡  between cells for time step 𝑡𝑡 ∈ 𝑇𝑇. 
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𝑥𝑥𝑖𝑖
𝑡𝑡,𝑚𝑚 ≥ 0 ∀ 𝑡𝑡 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐶𝐶,𝑚𝑚 ∈ 𝑀𝑀𝑜𝑜 (3-23) 

𝑦𝑦𝑖𝑖𝑖𝑖
𝑡𝑡,𝑚𝑚 ≥ 0 ∀ 𝑡𝑡 ∈ 𝑇𝑇, 𝑖𝑖 ∈ 𝐶𝐶\ {𝐶𝐶𝑖𝑖 }, 𝑗𝑗 ∈ 𝑃𝑃(𝑖𝑖),𝑚𝑚 ∈ 𝑀𝑀𝑜𝑜 (3-24) 

3.4 Summary 

This chapter presented a non-linear, mixed-integer, multi-modal optimization model for 

the timing of signalized intersections. The objective function and constraints of the model are 

described in detail in this chapter. The main decision variables are the signal timing plans for a 

network of intersections. The following chapters describe the development of algorithms to 

optimize this mixed-integer program for determining signals. 
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4 Distributed-Coordinated Algorithm 

4.1 Introduction 

This chapter presents a solution technique with spatial and temporal decompositions to 

optimize signal timing parameters in real-time and generate high-quality solutions. The proposed 

algorithm decomposes the mixed-integer formulation presented in Chapter 3 into several sub-

problems by relaxing constraints that connect links between each pair of adjacent intersections. In 

other words, this decomposition transforms a network-level optimization model into several 

intersection-level models. Hence, this intersection-level decomposition reduces the number of 

decision variables in each problem and provides the possibility of parallelism.  

Creating a coordination scheme among sub-problems is key to avoiding locally optimal 

solutions. Information for the coordination is generated by using a CTM simulation run. Hence, 

the entry demand for each intersection and the available capacity of receiving cells at each 

intersection are determined and updated on the basis of the CTM simulation outputs. Note that a 

lack of information on the available capacity of each intersection can create queue spillback 

because the objective function of the formulation is accumulated throughput maximization. The 

coordination among sub-problems is handled by the cloud components, while the optimization of 

sub-problems is taken care of by the fog components.  

A rolling horizon technique is also incorporated in the algorithm to respond to online 

information and instantaneous changes in traffic demand and link capacity. This technique helps 

decrease the computational complexity of the formulation and provides real-time solutions. The 

decomposition of the formulation and data transition procedures are described in the following 

sections with a simple example, shown in figure 4-1. This figure shows a network of two 

intersections with cell-based discretization. The network is shown before decomposition as it is 
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simulated (figure 4.1a) and after decomposition as it is optimized (figure 4.1b). The following 

sections are explained for sub-problem A. The same discussion is valid for sub-problem B. 

 

(a) Before decomposition 

 

(b) After decomposition 

Figure 4.1.  The schematics diagram of distributed optimization and distributed coordination 
  

4.2 Distribution of Problem Formulation 

To create intersection-level sub-problems, the links between cells 𝑖𝑖 and 𝑗𝑗 and cells 𝑘𝑘 and 𝑙𝑙 

are disconnected. Then, each sub-problem represents a mixed-integer linear program for one 

intersection and is optimized separately to determine the signal timing variables of the 

corresponding intersection for a prediction period. Dummy source and sink cells should be added 

to send in and absorb vehicles at the boundaries, respectively. To maintain the conservation of 
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flow, Constraint (3-2) is added to each sub-problem for new cells. New sets are defined as in table 

4-1 to be able to write a generalized formulation for sub-problems. 

Table 4.1.  Sets for a generalized formulation for sub-problems 

Sets: 
𝐻𝐻 Set of all time steps in a time horizon 
𝑆𝑆 Set of all sub-problems 
𝐶𝐶𝑖𝑖 Set of all network cells in sub-problem 𝑠𝑠 ∈ 𝑆𝑆 
𝐶𝐶𝑂𝑂𝑖𝑖  Set of all source cells in sub-problem 𝑠𝑠 ∈ 𝑆𝑆 
𝐶𝐶𝑆𝑆𝑖𝑖 Set of all sink cells in sub-problem 𝑠𝑠 ∈ 𝑆𝑆 
𝐶𝐶1𝑖𝑖 Set of all cells in sub-problem 𝑠𝑠 ∈ 𝑆𝑆 except for its source cells 𝑖𝑖 ∈ 𝐶𝐶𝑂𝑂𝑖𝑖  
𝐶𝐶2𝑖𝑖 Set of all cells in sub-problem 𝑠𝑠 ∈ 𝑆𝑆 except for its sink cells 𝑖𝑖 ∈ 𝐶𝐶𝑆𝑆𝑖𝑖 
𝐶𝐶3𝑖𝑖 Set of all cells in sub-problem 𝑠𝑠 ∈ 𝑆𝑆 except for its source and sink cells 𝑖𝑖 ∈ 𝐶𝐶𝑂𝑂𝑖𝑖 ∪ 𝐶𝐶𝑆𝑆𝑖𝑖 
𝑃𝑃(𝑏𝑏)𝑖𝑖 Set of cells in the path of bus 𝑏𝑏 ∈ 𝐵𝐵 in sub-problem 𝑠𝑠 ∈ 𝑆𝑆 

𝐸𝐸(𝑘𝑘)𝑖𝑖 Set of all intersection cells in sub-problem 𝑠𝑠 ∈ 𝑆𝑆 with through and left-turning 
movements  

𝑂𝑂(𝑖𝑖)𝑖𝑖 Set of all cells in sub-problem 𝑠𝑠 ∈ 𝑆𝑆 with conflicting through and left-turning 
movements with movement 𝑖𝑖 ∈ 𝐸𝐸(𝑘𝑘)  

𝑅𝑅𝑖𝑖 Set of all concurrent through and right turn movement with adjacent movements in 
sub-problem 𝑠𝑠 ∈ 𝑆𝑆 

𝑃𝑃(𝑖𝑖)𝑖𝑖 Set of all predecessors of cell 𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖 in sub-problem 𝑠𝑠 ∈ 𝑆𝑆 
𝑆𝑆(𝑖𝑖)𝑖𝑖 Set of all successors of cell 𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖 in sub-problem 𝑠𝑠 ∈ 𝑆𝑆 

  
The following optimization program shows the objective function and set of constraints for 

sub-problem 𝑠𝑠 ∈  𝑆𝑆. This program is a modified version of the problem formulation described in 

Chapter 3. The formulations differ in the definition of sets.  

max ∑ ∑ ∑ 𝛼𝛼𝑚𝑚𝑥𝑥𝑖𝑖
𝑡𝑡,𝑚𝑚

𝑖𝑖∈𝐶𝐶2
𝑠𝑠𝑡𝑡∈𝐻𝐻𝑚𝑚∈𝑀𝑀𝑀𝑀   (4-1) 

(𝛿𝛿𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑖𝑖)∑ 𝑦𝑦𝑘𝑘𝑖𝑖
𝑡𝑡,𝑚𝑚 −𝑘𝑘∈𝑃𝑃(𝑖𝑖)𝑠𝑠 (𝛿𝛿𝑖𝑖𝑀𝑀 +

𝛿𝛿𝑖𝑖𝑖𝑖)∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑡𝑡,𝑚𝑚 + 𝑑𝑑𝑖𝑖𝑡𝑡(𝛿𝛿𝑖𝑖𝑀𝑀)𝑖𝑖∈𝑆𝑆(𝑖𝑖)𝑠𝑠 = (𝛿𝛿𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑀𝑀 +

𝛿𝛿𝑖𝑖𝑖𝑖)(𝑥𝑥𝑖𝑖𝑡𝑡+1 − 𝑥𝑥𝑖𝑖𝑡𝑡  )  

∀ 𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈  𝐶𝐶𝑖𝑖 , 𝑙𝑙 ∈ 𝐶𝐶𝑖𝑖  \{𝐶𝐶𝑂𝑂𝑖𝑖  ,𝐶𝐶𝑂𝑂𝑖𝑖}, 

𝑜𝑜 ∈  𝐶𝐶𝑂𝑂𝑖𝑖 , 𝑠𝑠 ∈  𝐶𝐶𝑂𝑂𝑖𝑖 ,𝑚𝑚 ∈ 𝑀𝑀𝑜𝑜 

(4-2) 

∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑡𝑡,𝑚𝑚 ≤𝑖𝑖∈𝑆𝑆(𝑖𝑖)𝑠𝑠 𝑥𝑥𝑖𝑖

𝑡𝑡,𝑚𝑚  ∀ 𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝐶𝐶2𝑖𝑖  𝑚𝑚 ∈ 𝑀𝑀𝑜𝑜 (4-3) 

∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑡𝑡,𝑚𝑚 ≤𝑖𝑖∈𝑆𝑆(𝑖𝑖)𝑠𝑠𝑚𝑚∈𝑀𝑀𝑀𝑀 𝑤𝑤𝑖𝑖

𝑡𝑡𝜌𝜌𝑖𝑖𝐹𝐹𝑖𝑖 + (1 −𝑤𝑤𝑖𝑖
𝑡𝑡)𝐹𝐹𝑖𝑖  ∀ 𝑖𝑖 ∈ 𝐶𝐶2𝑖𝑖, 𝑡𝑡 ∈ 𝐻𝐻 (4-4) 
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∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑡𝑡,𝑚𝑚 ≤𝑖𝑖∈𝑃𝑃(𝑖𝑖)𝑠𝑠𝑚𝑚∈𝑀𝑀𝑀𝑀 𝑤𝑤𝑖𝑖

𝑡𝑡𝜌𝜌𝑖𝑖𝐹𝐹𝑖𝑖 + (1 − 𝑤𝑤𝑖𝑖
𝑡𝑡)𝐹𝐹𝑖𝑖  ∀ 𝑗𝑗 ∈ 𝐶𝐶1𝑖𝑖 , 𝑡𝑡 ∈  𝐻𝐻 (4-5) 

∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑡𝑡,𝑚𝑚

𝑖𝑖∈𝑃𝑃(𝑖𝑖)𝑠𝑠𝑚𝑚∈𝑀𝑀𝑀𝑀 ≤ 𝑀𝑀𝑖𝑖 − ∑ 𝜓𝜓𝑚𝑚 ×𝑚𝑚∈𝑀𝑀

𝑥𝑥𝑖𝑖
𝑡𝑡,𝑚𝑚  

∀ 𝑡𝑡 ∈ 𝐻𝐻, 𝑗𝑗 ∈ 𝐶𝐶1𝑖𝑖 
(4-6) 

𝑣𝑣𝑖𝑖𝑡𝑡+1

=
∆𝑋𝑋 − �∑ �𝑥𝑥𝑖𝑖

𝑡𝑡,𝑚𝑚 − ∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝑡𝑡,𝑚𝑚

𝑖𝑖∈𝛤𝛤(𝑖𝑖) �𝑚𝑚∈𝑀𝑀 × 𝐿𝐿𝑚𝑚�
∆𝑡𝑡

 
∀𝑡𝑡 ∈ 𝐻𝐻,∀𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖 

(4-7) 

𝜒𝜒𝑏𝑏𝑡𝑡=0 = 𝜒𝜒𝑏𝑏0 ∀𝑏𝑏 ∈ 𝐵𝐵 (4-8) 

𝑤𝑤𝑖𝑖
𝑡𝑡 ≤ ∑ 𝑤𝑤𝑏𝑏,𝑖𝑖

𝑡𝑡
𝑏𝑏∈𝐵𝐵    ∀𝑡𝑡 ∈ 𝐻𝐻,∀𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖 ,𝑚𝑚 =  𝑏𝑏𝑏𝑏𝑠𝑠 (4-9) 

𝑤𝑤𝑖𝑖
𝑡𝑡 ≥ 𝑤𝑤𝑏𝑏,𝑖𝑖

𝑡𝑡  ∀𝑡𝑡 ∈ 𝐻𝐻,∀𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖 ,∀𝑏𝑏 ∈ 𝐵𝐵𝑚𝑚 (4-10) 

𝑥𝑥𝑖𝑖
𝑡𝑡,𝑚𝑚 = � 𝑤𝑤𝑏𝑏,𝑖𝑖

𝑡𝑡

𝑏𝑏∈𝐵𝐵
 ∀𝑡𝑡 ∈ 𝐻𝐻,∀𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖 ,  𝑚𝑚 =  bus (4-11) 

∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖∈𝐸𝐸(𝑖𝑖) ≤ 2  ∀𝑡𝑡 ∈ 𝐻𝐻 (4-12) 

𝑔𝑔𝑖𝑖𝑡𝑡 + 𝑔𝑔𝑖𝑖𝑡𝑡 ≤ 1 ∀𝑖𝑖 ∈ 𝐸𝐸(𝑠𝑠), 𝑗𝑗 ∈ 𝑂𝑂(𝑖𝑖), 𝑡𝑡 ∈ 𝐻𝐻 (4-13) 

𝑔𝑔𝑖𝑖𝑡𝑡 = 𝑔𝑔𝑖𝑖𝑡𝑡 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑅𝑅𝑖𝑖, 𝑡𝑡 ∈ 𝐻𝐻 (4-14) 

𝑞𝑞𝑖𝑖𝑡𝑡 = 𝑔𝑔𝑖𝑖𝑡𝑡𝐹𝐹𝑖𝑖 ∀𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼𝑖𝑖, 𝑡𝑡 ∈ 𝐻𝐻 (4-15) 

∑ 𝑔𝑔𝑖𝑖
𝜁𝜁𝑡𝑡+𝐺𝐺𝑚𝑚𝑚𝑚𝑥𝑥+1

𝜁𝜁=𝑡𝑡 ≤ 𝐺𝐺𝑚𝑚𝑚𝑚𝑥𝑥  ∀𝑖𝑖 ∈ 𝐸𝐸(𝑠𝑠), 𝑡𝑡 ∈ 𝐻𝐻, 𝑡𝑡 ≤ |𝑇𝑇| − 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚  (4-16) 

∑ 𝑔𝑔𝑖𝑖
𝜁𝜁𝑡𝑡+𝐺𝐺𝑚𝑚𝑖𝑖𝑛𝑛

𝜁𝜁=𝑡𝑡+1 ≥ (𝑔𝑔𝑖𝑖𝑡𝑡+1 − 𝑔𝑔𝑖𝑖𝑡𝑡)𝐺𝐺𝑚𝑚𝑖𝑖𝑚𝑚  ∀ 𝑖𝑖 ∈ 𝐸𝐸(𝑠𝑠), 𝑡𝑡 ∈ 𝐻𝐻, 𝑡𝑡 ≤ |𝑇𝑇| − 𝐺𝐺𝑚𝑚𝑖𝑖𝑚𝑚 (4-17) 

𝑦𝑦𝑖𝑖𝑖𝑖
𝑡𝑡,𝑚𝑚 ≤ 𝑟𝑟𝑖𝑖

𝑡𝑡,𝑚𝑚 ∑ 𝑦𝑦𝑖𝑖𝑘𝑘
𝑡𝑡,𝑚𝑚

𝑘𝑘∈𝑆𝑆(𝑖𝑖)𝑠𝑠   ∀ 𝑡𝑡 ∈ 𝐻𝐻, 𝑗𝑗 ∈ 𝐶𝐶𝐼𝐼𝑖𝑖 , 𝑖𝑖 ∈ 𝑃𝑃(𝑗𝑗)𝑖𝑖 (4-18) 

∑ ∑ 𝑦𝑦𝑖𝑖𝑗𝑗
𝑡𝑡+1,𝑚𝑚 ≤𝑗𝑗∈𝑆𝑆(𝑖𝑖)𝑠𝑠𝑚𝑚∈𝑀𝑀𝑀𝑀 𝐹𝐹𝑖𝑖 − 𝐹𝐹𝑖𝑖𝑓𝑓(𝑔𝑔𝑖𝑖

𝑡𝑡+1 −𝑔𝑔𝑖𝑖
𝑡𝑡)  ∀ 𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼𝑖𝑖 (4-19) 

𝑥𝑥𝑖𝑖
𝑡𝑡,𝑚𝑚 ≥ 0 ∀ 𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖,𝑚𝑚 ∈ 𝑀𝑀𝑜𝑜 (4-20) 

𝑦𝑦𝑖𝑖𝑖𝑖
𝑡𝑡,𝑚𝑚 ≥ 0 

∀ 𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖\ {𝐶𝐶𝑖𝑖 }, 𝑗𝑗 ∈ 𝑃𝑃(𝑖𝑖)𝑖𝑖,𝑚𝑚

∈ 𝑀𝑀𝑜𝑜 

(4-21) 
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𝑣𝑣𝑏𝑏,𝑖𝑖
𝑡𝑡 ≤ 𝑣𝑣𝑖𝑖𝑡𝑡   ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖\𝐶𝐶𝐼𝐼𝑖𝑖 , 𝑏𝑏 ∈ 𝐵𝐵 (4-22) 

𝑣𝑣𝑏𝑏,𝑖𝑖
𝑡𝑡 ≤ 𝑣𝑣𝑓𝑓𝑏𝑏  ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖\𝐶𝐶𝐼𝐼𝑖𝑖 , 𝑏𝑏 ∈ 𝐵𝐵 (4-23) 

𝑣𝑣𝑏𝑏,𝑖𝑖
𝑡𝑡 ≥ 𝑣𝑣𝑖𝑖𝑡𝑡 −ℳ(1 − 𝛽𝛽1𝑖𝑖𝑡𝑡 )  ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖\𝐶𝐶𝐼𝐼𝑖𝑖 , 𝑏𝑏 ∈ 𝐵𝐵 (4-24) 

𝑣𝑣𝑏𝑏,𝑖𝑖
𝑡𝑡 ≥ 𝑣𝑣𝑓𝑓𝑏𝑏 −ℳ(1 − 𝛽𝛽2𝑖𝑖𝑡𝑡 ) ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖\𝐶𝐶𝐼𝐼𝑖𝑖 , 𝑏𝑏 ∈ 𝐵𝐵 (4-25) 

𝛽𝛽1𝑖𝑖𝑡𝑡 + 𝛽𝛽2𝑖𝑖𝑡𝑡 = 1 ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖\𝐶𝐶𝐼𝐼𝑖𝑖 , 𝑏𝑏 ∈ 𝐵𝐵 (4-26) 

𝛽𝛽1𝑖𝑖𝑡𝑡 ,𝛽𝛽2𝑖𝑖𝑡𝑡 ∈ {0,1} ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖\𝐶𝐶𝐼𝐼𝑖𝑖 (4-27) 

𝜇𝜇𝑖𝑖
𝑡𝑡 ≤ 𝑔𝑔𝑖𝑖

𝑡𝑡,𝑛𝑛 × 𝑣𝑣𝑓𝑓𝑏𝑏 ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼𝑖𝑖, 𝑏𝑏 ∈ 𝐵𝐵 (4-28) 

𝜇𝜇𝑖𝑖
𝑡𝑡 ≤ 𝑣𝑣𝑖𝑖𝑡𝑡 ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼𝑖𝑖, 𝑏𝑏 ∈ 𝐵𝐵 (4-29) 

𝜇𝜇𝑖𝑖
𝑡𝑡 ≥ 𝑣𝑣𝑖𝑖𝑡𝑡 − (1−𝑔𝑔𝑖𝑖

𝑡𝑡,𝑛𝑛) × 𝑣𝑣𝑓𝑓𝑏𝑏 ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼𝑖𝑖, 𝑏𝑏 ∈ 𝐵𝐵 (4-30) 

𝜇𝜇𝑖𝑖
𝑡𝑡 ≥ 0 ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼𝑖𝑖, 𝑏𝑏 ∈ 𝐵𝐵 (4-31) 

𝑣𝑣𝑏𝑏,𝑖𝑖
𝑡𝑡 ≤ 𝜇𝜇𝑖𝑖

𝑡𝑡  ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼𝑖𝑖, 𝑏𝑏 ∈ 𝐵𝐵 (4-32) 

𝑣𝑣𝑏𝑏,𝑖𝑖
𝑡𝑡 ≤ 𝑣𝑣𝑓𝑓𝑏𝑏  ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼𝑖𝑖, 𝑏𝑏 ∈ 𝐵𝐵 (4-33) 

𝑣𝑣𝑏𝑏,𝑖𝑖
𝑡𝑡 ≥ 𝜇𝜇𝑖𝑖

𝑡𝑡 −ℳ(1− 𝛾𝛾1𝑖𝑖
𝑡𝑡 )  ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼𝑖𝑖, 𝑏𝑏 ∈ 𝐵𝐵 (4-34) 

𝑣𝑣𝑏𝑏,𝑖𝑖
𝑡𝑡 ≥ 𝑣𝑣𝑓𝑓𝑏𝑏 −ℳ(1− 𝛾𝛾2𝑖𝑖

𝑡𝑡 )  ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼𝑖𝑖, 𝑏𝑏 ∈ 𝐵𝐵 (4-35) 

𝛾𝛾1𝑖𝑖
𝑡𝑡 + 𝛾𝛾2𝑖𝑖

𝑡𝑡 = 1  ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼𝑖𝑖, 𝑏𝑏 ∈ 𝐵𝐵 (4-36) 

𝛾𝛾1𝑖𝑖
𝑡𝑡 ,𝛾𝛾2𝑖𝑖

𝑡𝑡 ∈ {0,1}  ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼𝑖𝑖 (4-37) 

𝜒𝜒𝑏𝑏
𝑡𝑡 = 𝜒𝜒𝑏𝑏

𝑡𝑡−1 + 𝑧𝑧𝑖𝑖𝑡𝑡 × ∆𝑡𝑡 ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝑃𝑃(𝑏𝑏)𝑖𝑖, 𝑏𝑏 ∈ 𝐵𝐵 (4-38) 

𝑧𝑧𝑖𝑖𝑡𝑡 ≤ 𝑤𝑤𝑏𝑏,𝑖𝑖
𝑡𝑡 × 𝑣𝑣𝑓𝑓𝑏𝑏 ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝑃𝑃(𝑏𝑏)𝑖𝑖, 𝑏𝑏 ∈ 𝐵𝐵 (4-39) 

𝑧𝑧𝑖𝑖𝑡𝑡 ≤ 𝑣𝑣𝑏𝑏,𝑖𝑖
𝑡𝑡  ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝑃𝑃(𝑏𝑏)𝑖𝑖, 𝑏𝑏 ∈ 𝐵𝐵 (4-40) 

𝑧𝑧𝑖𝑖𝑡𝑡 ≥ 𝑣𝑣𝑏𝑏,𝑖𝑖
𝑡𝑡 − (1−𝑤𝑤𝑏𝑏,𝑖𝑖

𝑡𝑡 ) × 𝑣𝑣𝑓𝑓𝑏𝑏 ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝑃𝑃(𝑏𝑏)𝑖𝑖, 𝑏𝑏 ∈ 𝐵𝐵 (4-41) 

𝑧𝑧𝑖𝑖𝑡𝑡 ≥ 0 ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝑃𝑃(𝑏𝑏)𝑖𝑖, 𝑏𝑏 ∈ 𝐵𝐵 (4-42) 

𝐿𝐿𝑖𝑖 ≤ 𝜒𝜒𝑏𝑏
𝑡𝑡 +ℳ(1−𝑤𝑤𝑏𝑏,𝑖𝑖

𝑡𝑡 )   ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝑃𝑃(𝑏𝑏)𝑖𝑖, 𝑏𝑏 ∈ 𝐵𝐵 (4-43) 
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𝐿𝐿𝑖𝑖 ≥ 𝜒𝜒𝑏𝑏
𝑡𝑡 −ℳ(𝑤𝑤𝑏𝑏,𝑖𝑖

𝑡𝑡 + 𝜂𝜂1𝑖𝑖,𝑏𝑏
𝑡𝑡 )  ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝑃𝑃(𝑏𝑏)𝑖𝑖, 𝑏𝑏 ∈ 𝐵𝐵 (4-44) 

𝜒𝜒𝑏𝑏
𝑡𝑡 < 𝑈𝑈𝑖𝑖 + ℳ(1−𝑤𝑤𝑏𝑏,𝑖𝑖

𝑡𝑡 ) ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝑃𝑃(𝑏𝑏)𝑖𝑖, 𝑏𝑏 ∈ 𝐵𝐵 (4-45) 

𝜒𝜒𝑏𝑏
𝑡𝑡 > 𝑈𝑈𝑖𝑖 −ℳ(𝑤𝑤𝑏𝑏,𝑖𝑖

𝑡𝑡 + 𝜂𝜂2𝑖𝑖,𝑏𝑏
𝑡𝑡 ) ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝑃𝑃(𝑏𝑏)𝑖𝑖, 𝑏𝑏 ∈ 𝐵𝐵 (4-46) 

𝑤𝑤𝑏𝑏,𝑖𝑖
𝑡𝑡 + 𝜂𝜂1𝑖𝑖,𝑏𝑏

𝑡𝑡 + 𝜂𝜂2𝑖𝑖,𝑏𝑏
𝑡𝑡 = 1  ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝑃𝑃(𝑏𝑏)𝑖𝑖, 𝑏𝑏 ∈ 𝐵𝐵 (4-47) 

𝜂𝜂1𝑖𝑖,𝑏𝑏
𝑡𝑡 + 𝜂𝜂2𝑖𝑖,𝑏𝑏

𝑡𝑡 ≤ 1 ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝑃𝑃(𝑏𝑏)𝑖𝑖, 𝑏𝑏 ∈ 𝐵𝐵 (4-48) 

𝜂𝜂1𝑖𝑖,𝑏𝑏
𝑡𝑡 ,𝜂𝜂2𝑖𝑖,𝑏𝑏

𝑡𝑡 ∈ {0,1}  ∀𝑡𝑡 ∈ 𝐻𝐻, 𝑖𝑖 ∈ 𝑃𝑃(𝑏𝑏)𝑖𝑖, 𝑏𝑏 ∈ 𝐵𝐵 (4-49) 

   
 Two new sets of constraints should be added to the formulation of each sub-problem to 

create a coordination scheme. These constraints are defined in the next section. After the 

constraints have been added, they are updated before sub-problems are optimized with the newly 

generated information from the integrated CTM simulation.   

4.3 Coordination of Sub-problems 

Coordination of signal timing decisions among sub-problems is needed to push solutions 

toward system-level optimality. Sub-problems coordinate their decisions by exchanging 

information on the number of incoming vehicles, the available capacity of receiving cells, and 

signal timing parameters at neighboring sub-problems. The required information can be obtained 

by a CTM simulation run and by introducing new constraints to each sub-problem.  

Three key cells in figure 4-1.b are 1, 2 and 3, and cells 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, and 𝑙𝑙 in figure 4-1a. Cell 2 

is a dummy cell that represents a sink cell for the sub-problem A. Cell 3 is a dummy cell that 

represents a source cell for sub-problem A. 

We define Constraints (4-50) and (4-51) to ensure that each sub-problem does not send 

more vehicles than the available capacity of its neighbors. Hence, the outgoing vehicles from 
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intersection A, 𝑦𝑦12𝑡𝑡 , are limited to the available capacity of cell 𝑗𝑗 ∈ 𝐶𝐶,  𝑀𝑀𝑖𝑖 − 𝑥𝑥�𝑖𝑖𝑡𝑡. We define 𝑥𝑥�𝑖𝑖𝑡𝑡 as 

the occupancy of cell 𝑗𝑗 ∈ 𝐶𝐶 at time step 𝑡𝑡 ∈ 𝑇𝑇 obtained from the CTM simulation run.  

𝑦𝑦12𝑡𝑡 ≤ 𝑀𝑀𝑖𝑖 − 𝑥𝑥�𝑖𝑖𝑡𝑡 ∀ 𝑡𝑡 ∈ 𝑇𝑇 (4-50) 

   

The next piece of information is about the demand at the dummy source cells of each sub-

problem. Constraint (4-8) updates demand at the boundary cells of an intersection according to the 

number of vehicles coming from neighboring intersections. In the example of figure 4-1, the 

demand at cell 3 is equivalent to the flow of vehicles 𝑦𝑦�𝑘𝑘𝑖𝑖𝑡𝑡  between cell 𝑘𝑘 and 𝑙𝑙 given by the CTM 

simulation run for time step 𝑡𝑡 ∈ 𝑇𝑇. The entry demand at the dummy source cells of each sub-

problem needs to be known.   

𝑑𝑑3𝑡𝑡 = 𝑦𝑦�𝑘𝑘𝑖𝑖𝑡𝑡  ∀ 𝑡𝑡 ∈ 𝑇𝑇 (4-51) 

   
4.4 Model Predictive Control Algorithm 

Solving each sub-problem for the entire study period is still computationally expensive, 

and the algorithm may not generate solutions in real time. Moreover, we are unable to consider 

dynamic changes in demand, sudden incidents, and any other network changes by considering the 

entire study period for optimizing sub-problems. Therefore, we use a model predictive control 

(MPC) algorithm to avoid these possible issues. 

In this algorithm, the study period is discretized into smaller horizons, and each sub-

problem is optimized only for the determined horizon. After all sub-problems have been optimized 

in parallel for the determined horizon, the algorithm moves the horizon forward one time-step. In 

the next round, the sub-problems are optimized for the new horizon. The solution of the first time-

step in each horizon is stored to be used as the final solution. After putting all solutions together 

and covering all time-steps, we simulate the network and find the flow and occupancy of vehicles.  
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4.5 Overall Framework  

The proposed algorithm includes three main steps: 

Step 1› Initialization 

Step 2› Integrated CTM simulation  

Step 3› Optimization of sub-problems.  

Figure 4-2 shows a schematic diagram of the proposed algorithm. The algorithm starts with 

𝑡𝑡 = 1, and initial signal timing parameters are given as user inputs. These signal timing parameters 

should satisfy the constraints of the signal timing optimization model. Step 1 iterates over multiple 

iterations between the optimization of sub-problems and simulation steps without moving a time 

horizon to improve the initial signals. Next, Step 2 receives the signal timing parameters from Step 

1 as input and simulates an entire network for horizon 𝑡𝑡 to 𝑡𝑡 + ∆𝑇𝑇. The outputs of this step are 𝑥𝑥�𝑖𝑖𝑡𝑡 

for all cells 𝑖𝑖 ∈ 𝐶𝐶 at time step 𝑡𝑡 ∈ 𝑇𝑇 and 𝑦𝑦�𝑖𝑖𝑖𝑖𝑡𝑡  for all links between cell 𝑖𝑖 ∈ 𝐶𝐶 and cell 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖) at 

time step 𝑡𝑡 ∈ 𝑇𝑇. Using these outputs, Constraints (4-50) and (4-51) are updated in the formulation 

of each sub-problem. Then, in Step 3, all sub-problems are optimized separately and 

simultaneously for horizon 𝑡𝑡 to 𝑡𝑡 + ∆𝑇𝑇. The optimized signal timing plans from the sub-problems 

are used for the next horizon of the simulation. 

Moreover, before a time horizon is moved forward, whether the end of the study period 

has been reached is checked, and if it has not been reached, then the time horizon is moved a time-

step forward. Otherwise, the algorithm is stopped.  The signal timing parameters of the first time-

step of each horizon are stored to form the final solution generated by the algorithm. 
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Figure 4.2. The framework of DOCA-STO 

4.6 Summary 

This chapter explains how the distributed-coordinated algorithm works. The two main 

components of the algorithm, including the distribution of the formulation and the coordination 

scheme, are described in detail. In the distribution section, the formulation is decomposed into 

several sub-problems, and each sub-problem represents one intersection. The sub-problem also 

has the decision variables and constants within its assigned intersection. These sub-problems are 

optimized in the fog components. We also proposed a temporal decomposition. In the coordination 

section, we exchange some information among sub-problems such as the available capacity of 

receiving sub-problems and incoming demand to each sub-problem. The computations are done in 

the cloud component. Finally, this chapter provides the details of implementing the approach in 
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real time by using a model predictive algorithm. The overall framework is also explained to help 

understand all sections of this algorithm together. 
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5  Micro-Simulation Test-Bed Development 

5.1 Introduction 

This chapter describes the development of a microsimulation testbed to evaluate the 

performance of the developed methodology.  

5.2 System State Estimation 

The state of the system should be known at the beginning of each horizon: the occupancy 

of all cells at the first time step of each horizon is input and defines the initial state of the system. 

The locations of vehicles in the network are converted into cell occupancies for this purpose. We 

introduced an approach to use location information of connected vehicles (CV) and vehicle counts 

of loop detectors to estimate cell occupancies.  

Consider the link in figure 5-1. The link includes several CVs that are equipped with 

onboard units and can transmit their location to road-side units in a network. If the penetration rate 

of connected vehicles is 100 percent, then the state estimation is straightforward. The location of 

vehicles will be mapped to their corresponding cells, and the cell occupancies will be the 

summation of vehicles in the cells. However, the locations of unequipped vehicles should be 

estimated when the CV penetration rate is less than 100 percent.  

 

Figure 5.1.  A link with the corresponding cells including both equipped (CV) and unequipped 
(non-CV) vehicles (Mohebifard and Hajbabaie, 2018b) 
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The proposed approach for system state estimation is the integration of two different 

estimation techniques. The first technique approximates the density distribution of vehicles in each 

network link with a vehicle sample that includes CVs. The second technique uses the flow 

feasibility and conservation constraints of CTM to estimate cell occupancies. These two 

estimations are averaged on the basis of the market penetration rate of CVs.  

5.2.2 State Estimation Using CV Location Information 

The distribution of vehicles in each network link can be estimated by using Equation (5-

1). In the equation, 𝑥𝑥𝑥𝑥𝑖𝑖𝑡𝑡 is the number of CVs in cell 𝑖𝑖 ∈ 𝐶𝐶 at time step 𝑡𝑡 ∈ 𝑇𝑇. By dividing 𝑥𝑥𝑥𝑥𝑖𝑖𝑡𝑡 over 

the total number of CVs in the link 𝑙𝑙 ∈ 𝐿𝐿 that contains cell 𝑖𝑖, the distribution of CVs in the link can 

be found. In this equation, 𝐿𝐿 represents the set of all network links. By multiplying the estimated 

distribution of CVs by the total number of vehicles in the link 𝑉𝑉𝑖𝑖𝑡𝑡, the distribution of both CVs and 

non-CVs can be found. The total number of vehicles in each link can be estimated by tracking the 

inflow and outflow of each link such that 𝑉𝑉𝑖𝑖𝑡𝑡 will be equal to the cumulative outflow minus the 

cumulative inflow of each link up to time step 𝑡𝑡 ∈ 𝑇𝑇, assuming that all links are equipped with 

stop-bar detectors.  

𝑥𝑥𝑖𝑖
𝑡𝑡,𝐶𝐶𝐶𝐶 = 𝑉𝑉𝑖𝑖𝑡𝑡

𝑥𝑥𝑥𝑥𝑖𝑖𝑡𝑡

∑ 𝑥𝑥𝑥𝑥𝑖𝑖𝑡𝑡𝑖𝑖∈𝑖𝑖
 ∀𝑖𝑖 ∈ 𝐶𝐶, 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇 (5-1) 

   

Note that as the penetration rate of CVs increases, the distribution estimation error 

decreases because the sample size of CVs increases and better represents the distribution of 

vehicles in a link. However, the estimation error increases with low CV penetration rates. To 

address this issue, we used the CTM flow conservation and feasibility equations to adjust the 

estimations given low CV penetration rates.  
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5.2.3 State Estimation Using CTM Flow Feasibility and Conservation Principles 

In this technique, we used the flow feasibility and conservation equations to track cell 

occupancies in each link. For more clarification, consider figure 5-1 again. The cell occupancies 

will be initialized to zero at the beginning of the study period when the network is empty. As 

vehicles enter the network, the loop detectors can track vehicles entering and exiting each link. 

This information can be utilized to simulate each link with the demand rate equal to the total 

vehicle counts of its upstream stop-bar detectors. If we assume that the flow of vehicles follows 

the flow conservation and feasibility equations (3-7)-(3-13), then we can estimate the cell 

occupancies 𝑥𝑥𝑖𝑖
𝑡𝑡,𝐶𝐶𝑇𝑇𝑀𝑀 for each cell 𝑖𝑖 ∈ 𝐶𝐶 and time step 𝑡𝑡 ∈ 𝑇𝑇. Note that this approach does not require 

any information from CVs and relies on only vehicle counts of loop detectors, assuming that all 

links are equipped with stop-bar detectors.  

5.3 Combined CV and CTM State Estimations  

Once the estimations of 𝑥𝑥𝑖𝑖
𝑡𝑡,𝐶𝐶𝐶𝐶 and 𝑥𝑥𝑖𝑖

𝑡𝑡,𝐶𝐶𝑇𝑇𝑀𝑀 have been found with the proposed approaches, 

the estimations are combined by using Equation (5-2). In this equation, the state estimations are 

adjusted by the penetration rate 0 ≤ 𝑃𝑃𝑅𝑅 ≤ 1 of CVs. This adjustment gives higher weight to 

estimations based on CVs when the penetration rate is high because the estimations are more 

accurate, but with low penetration rates, the estimations of the CTM-based approach will be given 

higher weight. Moreover, the estimated cell occupancies cannot increase the capacity of the cell 

𝑁𝑁𝑖𝑖.  

𝑥𝑥𝑖𝑖𝑡𝑡 = min�𝑃𝑃𝑅𝑅𝑥𝑥𝑖𝑖
𝑡𝑡,𝐶𝐶𝐶𝐶 + (1 − 𝑃𝑃𝑅𝑅)𝑥𝑥𝑖𝑖

𝑡𝑡,𝐶𝐶𝑇𝑇𝑀𝑀,𝑁𝑁𝑖𝑖� ∀𝑖𝑖 ∈ 𝐶𝐶, 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇 (5-2) 

5.4 Summary 

This chapter provides a detailed explanation for estimating the initial cell occupancies. 

Once we have the estimation, signal timings for each sub-problem can be optimized. In the 
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distributed optimization, a network will be divided into smaller sub-networks. The central 

optimization problem will be also decomposed into several sub-problems representing each sub-

network. Each of the sub-problems optimizes signals for its corresponding sub-network. The 

distributed coordination component shares information about the predicted number of vehicles that 

enter the sub-networks and their available capacity for receiving vehicles between all sub-

networks. This information will be incorporated as several constraints into the sub-problems so 

that the sub-problems can coordinate their decisions and push their local solutions toward the 

globally optimal solutions.  
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6 Implementation of a Cloud-Fog Architecture 

6.1 Introduction 

The objective of this portion of the project was to add a communication aspect to the traffic 

controller optimization algorithm to emulate real-life scenarios. The fog level consists of fog 

control units (FCUs), each connected to a traffic controller (TC) at each intersection (later on, for 

the CV stage, they will also be connected to an RSU). The cloud control unit (CCU) is linked to 

all FCUs and collects information from each periodically over the network. 

We implemented three different architectures: centralized cloud-based, distributed cloud-

based, and fully distributed. In the first architecture, each FCU pulls data from its associated traffic 

controller and communicates information such as vehicular traffic, signal phasing and timing, and 

intersection map to the CCU. The CCU performs the optimization and sends back the calculated 

results comprising the next signal phases to each FCU individually.  

In the second architecture, the optimization process or computations are distributed, but 

the communication is centralized. In other words, at the start of each interval before the next phase 

calculation, the CCU pulls all the information from the FCUs. However, the FCUs also send an 

additional “REQUEST” packet to the CCU. This packet is one of the fields that contain the list of 

neighboring FCUs from which information is required to calculate the next phases. The CCU 

responds to each REQUEST individually by sending the information of interest to each FCU 

separately. Later on, multicast broadcasting may be used to make the process more efficient.  The 

optimizer is run locally (either on the FCU or by the TC itself).   

In the fully distributed architecture, each FCU sends a simple “REQUEST” packet to each 

FCU from which its associated traffic controller requires information. At the beginning of every 

cycle, the FCUs respond to the requests from neighboring FCUs. As soon as each FCU has 
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received the necessary information, the optimizers are run locally to calculate the next phases. 

Please note that both communication and computation are distributed in this scenario, and all FCUs 

communicate to each other separately. 

Architecture-wise, the first scenario is a simple client-server architecture in which the CCU 

acts as the server, does the optimizations, and sends back the results to its clients, which are the 

FCUs (though they may be technically called fog servers). On the other hand, in the distributed 

architectures the FCUs are also servers that serve requests from other clients (including the CCU). 

Before we go to the implementation details for simulation, we would like to justify the philosophy 

behind testing three different architectures and the benefits and drawbacks of each.    

The complete set-up is simulation-based such that the traffic controllers are virtually 

emulated in VISSIM. An “interface program” creates virtual clients (using multi-threading) that 

are linked to each FCU. The FCUs obtain the controller information via the VISSIM COM port. 

All FCU and CCU servers are hosted on the same machine on the local host IP address with 

different ports to simulate network traffic.  

Wherever applicable, the NTCIP standard has been used to facilitate the incorporation of 

RSUs and onboard units (OBUs) in the next phase of this project. The NTCIP standard defines the 

user datagram protocol (UDP) for communication at the link and network levels. Therefore, the 

UDP is used for the communication protocol, and an object-oriented design is used to construct 

the packets to facilitate the smooth transition to the full NTCIP standard (currently, some methods 

and attributes of the NTCIP standard have been omitted for ease of implementation). The following 

sections describe in detail how each of the three proposed architectures was simulated on a single 

machine. PTV VISSIM 11 was used for traffic simulation. 
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6.2 Centralized Architecture 

To simulate the centralized scenario, a virtual server is used to represent the CCU, which 

also hosts the optimization platform. Multithreaded UDP clients represent the FCUs. An additional 

application is deployed to interface between the clients representing the FCUs and the traffic 

controller in VISSIM over its available COM interface. Please refer to the flowchart in figure 6-1 

for more details. 

 

Figure 6.1.  Illustration of the centralized architecture 
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An object for sending the vehicle and current phase information was designed such that it 

follows the NTCIP standard. In this architecture, the objects are converted into UDP packets and 

sent over the network. The server collects the information from all clients and executes the 

optimization algorithm to generate the new phases. The calculated phases are transmitted back in 

the same format. 

To elaborate further, the CCU is assumed to be persistent and is running indefinitely.  As 

soon as the VISSIM environment has been executed from the JAVA program, the initial phase 

information and vehicle information is converted to the object format. Following that, 

communication is initiated to the server. Once the server has responded, the FCUs convert the 

objects into serialized UDP packets and transmit them. The server handles the clients by by using 

separate threads until it has received information from all FCUs. It is assumed that the server has 

apriori knowledge of the number of clients it will be serving in any optimization iteration. 

Once the information has been received at the CCU, it executes the distributed optimization 

algorithm and communicates the results for each FCU back by using a similar UDP packet format. 

The FCUs unpack that information into objects and then send each attribute back to the traffic 

controllers by using the COM port of VISSIM.  

6.3 Distributed Architecture with Cloud Communication 

To simulate a partially distributed approach, all FCUs, as well as the CCUs, are treated as 

servers that serve requests of either the TC connected via the COM interface or other servers, 

including the FCUs and other CCUs. The partially distributed simulation is different than the fully 

centralized case in that the FCUs are multi-threaded servers instead of clients. However, these 

servers are launched from an interface similar to that in the fully centralized case. This is because 

the FCUs only send either request packets on behalf of the TCs hosted by the interface. (Please 
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note that even in the fully distributed scenario, we assume all TCs are hosted by just one interface 

application for ease of implementation of the simulation. Multiple instances of VISSIM running 

the same traffic simulation are not practically relevant.)  

At the beginning of each cycle, the interface starts up VISSIM, creates different objects to 

represent each intersection/TC, and starts up the clients (representing the FCUs). The CCU server 

is assumed to be always online. The FCUs wait until they sense that the CCU is ready to 

communicate (practically, the server is always expected to be up during normal operations). As 

soon as communication with the CCU has been established, the FCUs start transmitting the 

information to the CCU along with their requests. The CCU responds to each FCU in parallel using 

multiple threads by accepting the sent information and storing it on a memory stack and then 

forwards the relevant information according to the REQUEST packets from each FCU.  

Once the FCUs have been received, all relevant information, they execute the optimizer.  

In the current set-up, for both distributed cases, only in the interface, the FCU-TC 

communication and optimizer execution is not handled in parallel via multiple threads. Rather, it 

is done sequentially, and consequently, the optimizers are also run serially. For simulation 

purposes, it does not matter whether each FCU executes the optimizer in parallel. Any 

execution/communication time evaluations via Monte Carlo simulations can be averaged over the 

number of runs and intersections. However, in the real-life scenario, each FCU will be physically 

connected to the TC without any need for an interface with a traffic simulation package. Please 

refer to the flowchart in figure 6-2 for more details. 
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Figure 6.2.  Illustration of the partially distributed architecture 
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6.4 Fully Distributed Architecture 

In the fully distributed scenario, the CCU is eliminated because the FCUs directly 

communicate with each other. The CCU may be added to represent a central supervisor that 

periodically gathers information or takes exceptional decisions. However, for normal operations, 

the FCUs and their associated controllers operate fully independently.  

In this scenario, the FCUs are designed as independent server applications that field 

requests by either responding to REQUEST packets or they pull information from the TCs via the 

interface. At the start of each cycle, each TC shares the relevant information packet with the 

associated FCU. Following that, each TC also shares the REQUEST packets with each associated 

FCU. Separate SEND and REQUEST applications were designed to facilitate the communication 

of different types of requests. The FCUs forward these requests to the appropriate neighboring 

FCUs, which send back the requested information packet. This information is forwarded to the 

associated TC. 

In this setting, it is assumed that the optimizer application is hosted at the TC and not at 

the FCU. For simulation purposes, this does not make a difference, but practically, it could be 

relevant, especially if there was a huge discrepancy between the computational capabilities of the 

FCU and TC processors. However, the current approach facilitates interfacing with VISSIM better. 

For full deployment, the optimization platform can be hosted as requested by the users.  

Either way, as soon as the optimized signal phases are calculated for each intersection, they 

are forwarded to the appropriate TC over the COM interface. Figure 6-3 illustrates the fully 

distributed architecture for N intersections with a functional view of the role of the interface and 

the FCU server applications.  
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Figure 6.3.  The functional view of the fully distributed architecture 
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7 Case Study and Numerical Results 

7.1 Case Study 

The case study was a section of the SR 522 corridor in Seattle, Washington, with ten 

intersections, 18 origins, and 18 destinations as shown in figure 7-1. This arterial street provides 

routes from Seattle to Kenmore and Bothell and is mainly used for daily commuting between cities. 

Figure 7-2 shows the intersections with more details.  

 

Figure 7.1.  Google Earth satellite map of the case study 

 

Figure 7.2.  Google map of a ten-intersection network on SR 522, Seattle, Washington, with 
intersection movements 
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The case study included a variety of movements, including bidirectional movements with two- to 

three-lane segments. Table 7-1 presents the left turning, through, and right turning volumes at all 

intersections. The volume data were obtained from the Washington State Department of 

Transportation for the PM peak. The network was loaded with 8,292 passenger cars and 59 transit 

buses for one hour, according to the PM peak volume data. This traffic load was considered our 

first demand profile. We also analyzed the corridor by increasing and decreasing the demand by 

15 percent as demand profiles 2 and 3, respectively.  

Table 7.1. Turning volume (veh/hour) at the intersections 

Intersection 
Westbound Southbound Eastbound Northbound 

Left Through Right Left Through Right Left Through Right Left Through Right 

1 NA 1769 20 13 NA 70 130 1366 NA NA NA NA 

2 NA 1638 200 75 NA 85 155 1422 NA NA NA NA 

3 NA 1705 18 65 NA 74 77 1513 NA NA NA -NA 

4 79 1490 210 153 68 127 143 1374 39 39 65 62 

5 166 1399 89 107 212 75 0 1331 678 805 191 119 

6 5 2160 114 82 21 335 407 1914 342 108 21 13 

7 4 1576 1023 653 8 165 340 2003 5 11 11 7 

8 15 1700 37 65 16 62 70 2272 6 8 20 12 

9 10 1705 55 28 5 10 12 2315 28 17 12 5 

10 22 1711 NA NA NA NA NA 2320 18 23 NA 35 

             

 

We considered seven origin-destination pairs or seven routes for buses. Table 7-2 shows 

the headways used for buses for each path, and table 7-3 shows our assumptions for the 

characteristics of this case study. 
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Table 7.2.  Origin-destination pairs for buses with the headways for each route 

OD 1 2 3 4 5 6 7 
Headways (sec) 300 300 300 300 600 600 1000 

        
Table 7.3. Characteristics of the network on SR 522, Seattle, Washington 

Parameter Value 
Time Step (s) 6 
Free-flow speed of vehicles except for buses (mph) 40 
Free-flow speed for buses (mph) 20 
Saturation headway (s) 2 
Minimum green time for through movements in major direction (s) 18 
Minimum green time for left-turning movements in major direction (s) 12 
Minimum green time for through movements in minor direction (s) 12 
Minimum green time for left-turning movements in minor direction (s) 6 
Prediction horizon (s) 9 
Study period (s) 3600 

 

7.2 Distributed-Coordinated Approach Performance  

Table 7-4 shows total traveled distance, total travel time, total delay, total stop delay, and 

total throughput for 10 percent, 30 percent, 50 percent, 70 percent, and 90 percent CV market 

penetration rates. The results showed that the total travel time decreased by more than 31 percent 

when the CV penetration rate increased from 10 percent to 90 percent. The CV penetration rates 

were increased by 20 percent increments, and the biggest impact happened when the CV market 

share was increased to 30 percent from 10 percent. An increase in CV market share yielded 

improvements in all other performance measures.  
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Table 7.4. Performance of the distributed coordinated approach 
Demand 
profile 

Penetration 
Rate (%) 

Total travel time 
(s) 

Total delay  Total stops 
Total delayed 

stops 
Total 

throughput 

1 

10 1351621 784790 44670 595918 2867 
30 1007667 319810 11258 183703 3473 
50 969508 281199 11361 145884 3555 
70 956077 274739 10496 144120 3549 
90 925443 258450 10325 129066 3589 

2 

10 1586435 914425 70388 581170 3377 
30 1208044 423604 19119 230458 3875 
50 1141926 374643 17905 194243 3955 
70 1101272 357439 16870 181317 3967 
90 1064688 335132 16096 168198 4013 

3 

10 1046275 476950 9893 372039 2633 
30 859934 233667 7709 131670 3035 
50 816453 206521 6674 109357 3060 
70 811583 202169 7080 103840 3107 
90 783026 186847 6516 92024.2 3120 

 

Figure 7.3 shows the average delays, average speeds, average number of stops, and average 

stopped delays for different CV penetration rates. Increasing the penetration rate of connected 

vehicles led to better performance of the system. 
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Figure 7.3.  Average delays, speeds, stops, and delayed stops for different penetration rates for 
demand profile 1 

 

We increased the demand level by 15 percent and measured the average delays, average 

speeds, average number of stops, and average stopped delays for different CV penetration rates, 

as shown in figure 7-4. Overall, the increase in demand level led to a decline in network 

performance.  
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Figure 7.4.  Average delays, speeds, stops, and delayed stops for different penetration rates for 
demand profile 2 

 

Figure 7-5 shows the average delays, average speeds, average number of stops, and average 

stopped delays for different penetration rates, including 10 percent, 30 percent, 50 percent, 70 

percent, and 90 percent when we decreased the demand by 15 percent. Increasing the penetration 

rate of connected vehicles led to better performance of the system. The average delay decreased 

by 52.60 percent with an increase in the CV penetration rate from 10 to 30 percent; decreased by 

58.10 percent with a CV penetration rate increase from 10 to 50 percent;  decreased by 59.24 

percent with a CV penetration rate increase from 10 to 70 percent;, and by 62.32 percent with an 

increase from 10 to 90 percent. The same CV penetration rate increases led to 24.74 percent, 30.66 

percent, 31.01 percent, and 36.59 percent reductions in the average number of stops, respectively. 
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Figure 7.5.  Average delays, speeds, stops, and delayed stops for different penetration rates for 
demand profile 3 
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8 Summary and Conclusions 

This project developed an optimization model and a solution technique to determine signal 

timing parameters in real time for large transportation networks. The model can account for 

different market shares of connected vehicles, transit movements, and time-varying demand. The 

solution technique is a model predictive control and follows a distributed architecture. The 

distributed optimization reduces the computational complexity and allows the solution technique 

to be applied to transportation networks of various sizes. Effective coordination among intersection 

controllers is designed to create consensus among them in their decision-making process.  

We developed a cloud-fog communication architecture to facilitate the execution of the 

solution technique. The fog level consists of fog control units (FCUs), each connected to a road-

side unit (RSU) at each intersection. Each of them was designed to collect the vehicle information 

from its collocated RSU and perform the distributed coordination and optimization (DCO) tasks 

for each intersection’s signal. The cloud control unit (CCU) is linked to the FCUs through wired 

or wireless backhaul links. This CCU is designed to both exchange information between the FCUs 

and enforce some parameters in their DCO processes in case of special events that require more 

coordination, such as traffic incidents and preemption for first responders. FCUs are implemented 

by using a virtual machine on a workstation.  

Numerical results in a simulated corridor of ten intersections showed that the approach can 

effectively determine near-optimal signal timing parameters under different demand levels, and 

significant improvement in traffic operations was observed with increased connected vehicle 

market penetration rates. Because of the COVID-19 pandemic, this project did not conduct any 

field tests, and all tests were performed with a micro-simulation testbed. Future research that 

includes hardware-in-the-loop and field tests is needed.  
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